- Installation
- Documentation
- Getting Started
- Connect
- Data Import and Export
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Lakehouse Formats
- Client APIs
- Overview
- Tertiary Clients
- ADBC
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Overview
- Arguments
- Dot Commands
- Output Formats
- Editing
- Safe Mode
- Autocomplete
- Syntax Highlighting
- Known Issues
- Dart
- Go
- Java (JDBC)
- Julia
- Node.js (Deprecated)
- Node.js (Neo)
- ODBC
- PHP
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- MERGE INTO
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SHOW and SHOW DATABASES
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Expression
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- TRY
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Installing Extensions
- Advanced Installation Methods
- Distributing Extensions
- Versioning of Extensions
- Troubleshooting of Extensions
- Core Extensions
- Overview
- AutoComplete
- Avro
- AWS
- Azure
- Delta
- DuckLake
- Encodings
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- Overview
- Iceberg REST Catalogs
- Amazon S3 Tables
- Amazon SageMaker Lakehouse (AWS Glue)
- Troubleshooting
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- TPC-DS
- TPC-H
- UI
- Vortex
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- File Access with the file: Protocol
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Fastly Object Storage Import
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Working with Huge Databases
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- marimo Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- AsOf Join
- Full-Text Search
- Graph Queries
- query and query_table Functions
- Merge Statement for SCD Type 2
- Timestamp Issues
- Snippets
- Creating Synthetic Data
- Dutch Railway Datasets
- Sharing Macros
- Analyzing a Git Repository
- Importing Duckbox Tables
- Copying an In-Memory Database to a File
- Troubleshooting
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- DuckDB's Footprint
- Installing DuckDB
- Logging
- Securing DuckDB
- Non-Deterministic Behavior
- Limits
- DuckDB Docker Container
- Development
- DuckDB Repositories
- Release Cycle
- Profiling
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Python
- R
- Troubleshooting
- Unofficial and Unsupported Platforms
- Benchmark Suite
- Testing
- Internals
- Sitemap
- Live Demo
DuckDB supports graph queries via the DuckPGQ community extension, which implements the SQL/PGQ syntax from the SQL:2023 standard.
Graph queries allow you to find patterns and paths in connected data, such as social networks, financial transactions, or knowledge graphs, using a visual, intuitive syntax.
Warning DuckPGQ is a community extension and is still under active development. Some features may be incomplete. See the DuckPGQ website for the latest status.
Installing DuckPGQ
INSTALL duckpgq FROM community;
LOAD duckpgq;
Creating a Property Graph
A property graph consists of vertices (nodes) and edges (relationships). You create one as a layer on top of existing tables:
CREATE TABLE Person (id BIGINT, name VARCHAR);
CREATE TABLE Knows (person1_id BIGINT, person2_id BIGINT, since DATE);
INSERT INTO Person VALUES (1, 'Alice'), (2, 'Bob'), (3, 'Charlie');
INSERT INTO Knows VALUES (1, 2, '2020-01-01'), (2, 3, '2021-06-15');
CREATE PROPERTY GRAPH social_network
VERTEX TABLES (
Person
)
EDGE TABLES (
Knows
SOURCE KEY (person1_id) REFERENCES Person (id)
DESTINATION KEY (person2_id) REFERENCES Person (id)
);
Pattern Matching
Use the GRAPH_TABLE function with MATCH to find patterns. The syntax uses () for nodes and [] for edges:
FROM GRAPH_TABLE (social_network
MATCH (a:Person)-[k:Knows]->(b:Person)
COLUMNS (a.name AS person1, b.name AS person2, k.since)
);
| person1 | person2 | since |
|---|---|---|
| Alice | Bob | 2020-01-01 |
| Bob | Charlie | 2021-06-15 |
Path Finding
Find paths of variable length using quantifiers like {1,5} (1 to 5 hops) or + (one or more):
FROM GRAPH_TABLE (social_network
MATCH p = ANY SHORTEST (a:Person)-[k:Knows]->{1,3}(b:Person)
WHERE a.name = 'Alice' AND b.name = 'Charlie'
COLUMNS (a.name AS start_person, b.name AS end_person, path_length(p) AS hops)
);
| start_person | end_person | hops |
|---|---|---|
| Alice | Charlie | 2 |
Graph Algorithms
Warning Graph algorithm functions may currently fail due to a known issue and return the
csr_cte does not existerror.
DuckPGQ includes built-in graph algorithms:
| Function | Description |
|---|---|
pagerank(graph, vertex_label, edge_label) |
Computes PageRank centrality scores |
local_clustering_coefficient(graph, vertex_label, edge_label) |
Measures how connected a node's neighbors are |
weakly_connected_component(graph, vertex_label, edge_label) |
Identifies connected components |
Example:
FROM pagerank(social_network, Person, Knows);
Use Case: Financial Fraud Detection
Graph queries excel at finding suspicious patterns in financial data. See the "Uncovering Financial Crime with DuckDB and Graph Queries" blog post for a detailed example of detecting money laundering patterns.
Cleanup
To remove a property graph:
DROP PROPERTY GRAPH social_network;
Further Reading
- DuckPGQ Documentation
- DuckPGQ Community Extension
- "Uncovering Financial Crime with DuckDB and Graph Queries" blog post