- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- ADBC
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java (JDBC)
- Julia
- Node.js (deprecated)
- Node.js (Neo)
- ODBC
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Installing Extensions
- Advanced Installation Methods
- Distributing Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- TPC-DS
- TPC-H
- UI
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- File Access with the file: Protocol
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Fastly Object Storage Import
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Creating Synthetic Data
- Sharing Macros
- Analyzing a Git Repository
- Importing Duckbox Tables
- Copying an In-Memory Database to a File
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- DuckDB's Footprint
- Securing DuckDB
- Non-Deterministic Behavior
- Limits
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Python
- R
- Troubleshooting
- Unofficial and Unsupported Platforms
- Benchmark Suite
- Internals
- Why DuckDB
- FAQ
- Code of Conduct
- Sitemap
- Live Demo
The UPDATE EXTENSIONS
statement allows to synchronize the local installed extension state with the repository that published a given extension.
This statement is the recommended way to keep up to date with new feature or bug fixed being rolled out by extension developers.
Note that DuckDB extensions cannot be reloaded during runtime, therefore UPDATE EXTENSIONS
does not reload the updated extensions.
To use the updated extensions, restart the process running DuckDB.
Updating All Extensions
To update all extensions installed for DuckDB version of your client:
UPDATE EXTENSIONS;
This will iterate over the extensions and return their repositories and the update result:
┌────────────────┬──────────────┬─────────────────────┬──────────────────┬─────────────────┐
│ extension_name │ repository │ update_result │ previous_version │ current_version │
│ varchar │ varchar │ varchar │ varchar │ varchar │
├────────────────┼──────────────┼─────────────────────┼──────────────────┼─────────────────┤
│ iceberg │ core_nightly │ UPDATED │ 6386ab5 │ b3ec51a │
│ icu │ core │ NO_UPDATE_AVAILABLE │ v1.2.1 │ v1.2.1 │
│ autocomplete │ core │ NO_UPDATE_AVAILABLE │ v1.2.1 │ v1.2.1 │
│ httpfs │ core_nightly │ NO_UPDATE_AVAILABLE │ cf3584b │ cf3584b │
│ json │ core │ NO_UPDATE_AVAILABLE │ v1.2.1 │ v1.2.1 │
│ aws │ core_nightly │ NO_UPDATE_AVAILABLE │ d3c5013 │ d3c5013 │
└────────────────┴──────────────┴─────────────────────┴──────────────────┴─────────────────┘
Updating Selected Extensions
For more fine-grained control, you can also provide a list of extension names to be updated:
UPDATE EXTENSIONS (name_a, name_b, name_c);
How It Works
UPDATE EXTENSIONS
is implemented by storing, if available, the ETag information, and sending a GET request conditional on the fact that the remote extension is different (using the ETag as proxy) than the local available one.
This ensures that subsequent UPDATE EXTENSIONS
calls – if the remote state has not changed – are inexpensive.
If a change is found for a given extension, DuckDB performs the following operation. For example, if name_a
and name_c
changed, then:
UPDATE EXTENSIONS (name_a, name_b, name_c);
This will result in the following commands:
FORCE INSTALL name_a;
FORCE INSTALL name_c;