- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- ADBC
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java (JDBC)
- Julia
- Node.js (deprecated)
- Node.js (Neo)
- ODBC
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Expression
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Installing Extensions
- Advanced Installation Methods
- Distributing Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- Avro
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- TPC-DS
- TPC-H
- UI
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- File Access with the file: Protocol
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Fastly Object Storage Import
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Creating Synthetic Data
- Sharing Macros
- Analyzing a Git Repository
- Importing Duckbox Tables
- Copying an In-Memory Database to a File
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- DuckDB's Footprint
- Logging
- Securing DuckDB
- Non-Deterministic Behavior
- Limits
- Development
- DuckDB Repositories
- Profiling
- Release Calendar
- Roadmap
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Python
- R
- Troubleshooting
- Unofficial and Unsupported Platforms
- Benchmark Suite
- Testing
- Internals
- Why DuckDB
- FAQ
- Code of Conduct
- Sitemap
- Live Demo
General-Purpose Data Types
The table below shows all the built-in general-purpose data types. The alternatives listed in the aliases column can be used to refer to these types as well, however, note that the aliases are not part of the SQL standard and hence might not be accepted by other database engines.
Name | Aliases | Description |
---|---|---|
BIGINT |
INT8 , LONG |
Signed eight-byte integer |
BIT |
BITSTRING |
String of 1s and 0s |
BLOB |
BYTEA , BINARY, VARBINARY |
Variable-length binary data |
BOOLEAN |
BOOL , LOGICAL |
Logical Boolean (true / false ) |
DATE |
Calendar date (year, month day) | |
DECIMAL(prec, scale) |
NUMERIC(prec, scale) |
Fixed-precision number with the given width (precision) and scale, defaults to prec = 18 and scale = 3 |
DOUBLE |
FLOAT8 , |
Double precision floating-point number (8 bytes) |
FLOAT |
FLOAT4 , REAL |
Single precision floating-point number (4 bytes) |
HUGEINT |
Signed sixteen-byte integer | |
INTEGER |
INT4 , INT , SIGNED |
Signed four-byte integer |
INTERVAL |
Date / time delta | |
JSON |
JSON object (via the json extension) |
|
SMALLINT |
INT2 , SHORT |
Signed two-byte integer |
TIME |
Time of day (no time zone) | |
TIMESTAMP WITH TIME ZONE |
TIMESTAMPTZ |
Combination of time and date that uses the current time zone |
TIMESTAMP |
DATETIME |
Combination of time and date |
TINYINT |
INT1 |
Signed one-byte integer |
UBIGINT |
Unsigned eight-byte integer | |
UHUGEINT |
Unsigned sixteen-byte integer | |
UINTEGER |
Unsigned four-byte integer | |
USMALLINT |
Unsigned two-byte integer | |
UTINYINT |
Unsigned one-byte integer | |
UUID |
UUID data type | |
VARCHAR |
CHAR , BPCHAR , TEXT , STRING |
Variable-length character string |
Implicit and explicit typecasting is possible between numerous types, see the Typecasting page for details.
Nested / Composite Types
DuckDB supports five nested data types: ARRAY
, LIST
, MAP
, STRUCT
, and UNION
. Each supports different use cases and has a different structure.
Name | Description | Rules when used in a column | Build from values | Define in DDL/CREATE |
---|---|---|---|---|
ARRAY |
An ordered, fixed-length sequence of data values of the same type. | Each row must have the same data type within each instance of the ARRAY and the same number of elements. |
[1, 2, 3] |
INTEGER[3] |
LIST |
An ordered sequence of data values of the same type. | Each row must have the same data type within each instance of the LIST , but can have any number of elements. |
[1, 2, 3] |
INTEGER[] |
MAP |
A dictionary of multiple named values, each key having the same type and each value having the same type. Keys and values can be any type and can be different types from one another. | Rows may have different keys. | map([1, 2], ['a', 'b']) |
MAP(INTEGER, VARCHAR) |
STRUCT |
A dictionary of multiple named values, where each key is a string, but the value can be a different type for each key. | Each row must have the same keys. | {'i': 42, 'j': 'a'} |
STRUCT(i INTEGER, j VARCHAR) |
UNION |
A union of multiple alternative data types, storing one of them in each value at a time. A union also contains a discriminator “tag” value to inspect and access the currently set member type. | Rows may be set to different member types of the union. | union_value(num := 2) |
UNION(num INTEGER, text VARCHAR) |
Rules for Case Sensitivity
The keys of MAP
s are case-sensitive, while keys of UNION
s and STRUCT
s are case-insensitive.
For examples, see the Rules for Case Sensitivity section.
Updating Values of Nested Types
When performing updates on values of nested types, DuckDB performs a delete operation followed by an insert operation. When used in a table with ART indexes (either via explicit indexes or primary keys/unique constraints), this can lead to unexpected constraint violations.
Nesting
ARRAY
, LIST
, MAP
, STRUCT
, and UNION
types can be arbitrarily nested to any depth, so long as the type rules are observed.
Struct with LIST
s:
SELECT {'birds': ['duck', 'goose', 'heron'], 'aliens': NULL, 'amphibians': ['frog', 'toad']};
Struct with list of MAP
s:
SELECT {'test': [MAP([1, 5], [42.1, 45]), MAP([1, 5], [42.1, 45])]};
A list of UNION
s:
SELECT [union_value(num := 2), union_value(str := 'ABC')::UNION(str VARCHAR, num INTEGER)];
Performance Implications
The choice of data types can have a strong effect on performance. Please consult the Performance Guide for details.