- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- ADBC
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java (JDBC)
- Julia
- Node.js (deprecated)
- Node.js (Neo)
- ODBC
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Expression
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Installing Extensions
- Advanced Installation Methods
- Distributing Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- Avro
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- TPC-DS
- TPC-H
- UI
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- File Access with the file: Protocol
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Fastly Object Storage Import
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Creating Synthetic Data
- Sharing Macros
- Analyzing a Git Repository
- Importing Duckbox Tables
- Copying an In-Memory Database to a File
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- DuckDB's Footprint
- Logging
- Securing DuckDB
- Non-Deterministic Behavior
- Limits
- Development
- DuckDB Repositories
- Profiling
- Release Calendar
- Roadmap
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Python
- R
- Troubleshooting
- Unofficial and Unsupported Platforms
- Benchmark Suite
- Testing
- Internals
- Why DuckDB
- FAQ
- Code of Conduct
- Sitemap
- Live Demo
Prerequisites
On Linux, install the required packages with the package manager of your distribution.
Ubuntu and Debian
CLI Client
On Ubuntu and Debian (and also MX Linux, Linux Mint, etc.), tthe requirements for building the DuckDB CLI client are the following:
sudo apt-get update
sudo apt-get install -y git g++ cmake ninja-build libssl-dev
git clone https://github.com/duckdb/duckdb
cd duckdb
GEN=ninja make
Fedora, CentOS and Red Hat
CLI Client
The requirements for building the DuckDB CLI client on Fedora, CentOS, Red Hat, AlmaLinux, Rocky Linux, etc. are the following:
sudo yum install -y git g++ cmake ninja-build openssl-devel
git clone https://github.com/duckdb/duckdb
cd duckdb
GEN=ninja make
Alpine Linux
CLI Client
The requirements for building the DuckDB CLI client on Alpine Linux are the following:
apk add g++ git make cmake ninja
git clone https://github.com/duckdb/duckdb
cd duckdb
GEN=ninja make
Note that Alpine Linux uses musl libc as its C standard library.
Currently, there are no official DuckDB binaries distributed for musl libc but it can be build with it manually following the instructions on this page.
Note that starting with DuckDB v1.2.0, extensions are distributed for the linux_amd64_musl
platform.
Python Client on Alpine Linux
Currently, installing the DuckDB Python on Alpine Linux requires compilation from source.
To do so, install the required packages before running pip
:
apk add g++ py3-pip python3-dev
pip install duckdb
Using the DuckDB CLI Client on Linux
Once the build finishes successfully, you can find the duckdb
binary in the build
directory:
build/release/duckdb
For different build configurations (debug
, relassert
, etc.), please consult the “Build Configurations” page.
Building Using Extension Flags
To build using extension flags, set the CORE_EXTENSIONS
flag to the list of extensions that you want to be build. For example:
CORE_EXTENSIONS='autocomplete;httpfs;icu;json;tpch' GEN=ninja make
Troubleshooting
R Package on Linux AArch64: too many GOT entries
Build Error
Problem: Building the R package on Linux running on an ARM64 architecture (AArch64) may result in the following error message:
/usr/bin/ld: /usr/include/c++/10/bits/basic_string.tcc:206:
warning: too many GOT entries for -fpic, please recompile with -fPIC
Solution:
Create or edit the ~/.R/Makevars
file. This example also contains the MAKEFLAGS
setting to parallelize the build:
ALL_CXXFLAGS = $(PKG_CXXFLAGS) -fPIC $(SHLIB_CXXFLAGS) $(CXXFLAGS)
MAKEFLAGS = -j$(nproc)
Building the httpfs Extension Fails
Problem:
When building the httpfs
extension on Linux, the build may fail with the following error.
CMake Error at /usr/share/cmake-3.22/Modules/FindPackageHandleStandardArgs.cmake:230 (message):
Could NOT find OpenSSL, try to set the path to OpenSSL root folder in the
system variable OPENSSL_ROOT_DIR (missing: OPENSSL_CRYPTO_LIBRARY
OPENSSL_INCLUDE_DIR)
Solution:
Install the libssl-dev
library.
sudo apt-get install -y libssl-dev
Then, build with:
GEN=ninja CORE_EXTENSIONS="httpfs" make