
DuckDB: an Embeddable Analytical Database
Mark Raasveldt
m.raasveldt@cwi.nl
CWI, Amsterdam

Hannes Mühleisen
hannes@cwi.nl
CWI, Amsterdam

ABSTRACT
The immense popularity of SQLite shows that there is a need
for unobtrusive in-process data management solutions. How-
ever, there is no such system yet geared towards analytical
workloads. We demonstrate DuckDB, a novel data manage-
ment system designed to execute analytical SQL queries
while embedded in another process. In our demonstration,
we pit DuckDB against other data management solutions
to showcase its performance in the embedded analytics sce-
nario. DuckDB is available as Open Source software under a
permissive license.
ACM Reference Format:
Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Em-
beddable Analytical Database. In 2019 International Conference on
Management of Data (SIGMOD ’19), June 30-July 5, 2019, Ams-
terdam, Netherlands. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3299869.3320212

1 INTRODUCTION
Data management systems have evolved into large mono-
lithic database servers running as stand-alone processes. This
is partly a result of the need to serve requests from many
clients simultaneously and partly due to data integrity re-
quirements. While powerful, stand-alone systems require
considerable effort to set up properly and data access is con-
stricted by their client protocols [12]. There exists a com-
pletely separate use case for data management systems, those
that are embedded into other processes where the database
system is a linked library that runs completely within a “host”
process. The most well-known representative of this group
is SQLite, the most widely deployed SQL database engine
with more than a trillion databases in active use [4]. SQLite
strongly focuses on transactional (OLTP) workloads, and con-
tains a row-major execution engine operating on a B-Tree
storage format [3]. As a consequence, SQLite’s performance
on analytical (OLAP) workloads is very poor.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5643-5/19/06.
https://doi.org/10.1145/3299869.3320212

OLTP OLAP

Embedded

Stand-Alone

?

Figure 1: Systems Landscape

There is a clear need for embeddable analytical data man-
agement. This needs stems from two main sources: Inter-
active data analysis and “edge” computing. Interactive data
analysis is performed using tools such as R or Python. The
basic data management operators available in these envi-
ronments through extensions (dplyr [14], Pandas [6], etc.)
closely resemble stacked relational operators, much like in
SQL queries, but lack full-query optimization and transac-
tional storage. Embedded analytical data management is also
desirable for edge computing scenarios. For example, con-
nected power meters currently forward data to a central
location for analysis. This is problematic due to bandwidth
limitations especially on radio interfaces, and also raises pri-
vacy concerns. An embeddable analytical database is very
well-equipped to support this use case, with data analyzed
on the edge node. The two use cases of interactive analysis
and edge computing appear orthogonal. But surprisingly, the
different use cases yield similar requirements. For example,
in both use cases portability and resource requirements are
critical, and systems that are careful with both will do well
in both usage scenarios.

In our previous research, we have developedMonetDBLite,
an embedded analytical system that was derived from the
MonetDB system [13]. MonetDBLite proved successfully
that there is a real interest in embedded analytics, it enjoys
thousands of downloads per month and is used all around
the world from the Dutch central bank to the New Zealand
police. However, its success also uncovered several issues
that proved very complex to address in a non-purpose-built

https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3299869.3320212

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands Mark Raasveldt and Hannes Mühleisen

system. The following requirements for embedded analytical
databases were identified:

• High efficiency for OLAP workloads, but without com-
pletely sacrificing OLTP performance. For example,
concurrent data modification is a common use case in
dashboard-scenarios where multiple threads update
the data using OLTP queries and other threads run the
OLAP queries that drive visualizations simultaneously.

• Efficient transfer of tables to and from the database
is essential. Since both database and application run
in the same process and thus address space, there is
a unique opportunity for efficient data sharing which
needs to be exploited.

• High degree of stability, if the embedded database
crashes, for example due to an out-of-memory situ-
ation, it takes the host down with it. This can never
happen. Queries need to be able to be aborted cleanly
if they run out of resources, and the system needs to
gracefully adapt to resource contention.

• Practical “embeddability” and portability, the database
needs to run in whatever environment the host does.
Dependencies on external libraries (e.g. openssh)
for either compile- or runtime have been found to
be problematic. Signal handling, calls to exit() and
modification of singular process state (locale, working
directory etc.) are forbidden.

In this demonstration, we present the capabilities of our
new system, DuckDB. DuckDB is a new purpose-built em-
beddable relational database management system. DuckDB
is available as Open-Source software under the permissive
MIT license1. To the best of our knowledge, there currently
exists no purpose-built embeddable analytical database de-
spite the clear need outlined above. DuckDB is no research
prototype but built to be widely used, with millions of test
queries run on each commit to ensure correct operation and
completeness of the SQL interface. Our first-ever demonstra-
tion of DuckDB will pit it against other systems on a small
device. We will allow viewers to increase the size of the
dataset processed, and observe various metrics such as CPU
load and memory pressure as the dataset size changes. This
will demonstrate the performance of DuckDB for analytical
embedded data analysis.

2 DESIGN AND IMPLEMENTATION
DuckDB’s design decisions are informed by its intended use
case: embedded analytics. Overall, we follow the “textbook”
separation of components: Parser, logical planner, optimizer,
physical planner, execution engine. Orthogonal components
are the transaction and storage managers. While DuckDB
is first in a new class of data management systems, none of
1https://github.com/cwida/duckdb

API C/C++/SQLite
SQL Parser libpg_query [2]
Optimizer Cost-Based [7, 9]
Execution Engine Vectorized [1]
Concurrency Control Serializable MVCC [10]
Storage DataBlocks [5]

Table 1: DuckDB: Component Overview

DuckDB’s components is revolutionary in its own regard.
Instead, we combined methods and algorithms from the state
of the art that were best suited for our use cases.
Being an embedded database, DuckDB does not have a

client protocol interface or a server process, but instead is
accessed using a C/C++ API. In addition, DuckDB provides
a SQLite compatibility layer, allowing applications that pre-
viously used SQLite to use DuckDB through re-linking or
library overloading. As with MonetDBLite, we have also im-
plemented the database APIs for R (DBI) and Python (PEP
249).

The SQL parser is derived from Postgres’ SQL parser that
has been stripped down as much as possible [2]. This has
the advantage of providing DuckDB with a full-featured and
stable parser to handle one of the most volatile form of its
input, SQL queries. The parser takes a SQL query string as
input and returns a parse tree of C structures. This parse tree
is then immediately transformed into our own parse tree of
C++ classes to limit the reach of Postgres’ data structures.
This parse tree consists of statements (e.g.SELECT,INSERT
etc.) and expressions (e.g. SUM(a)+1).
The logical planner consists of two parts, the binder and

the plan generator. The binder resolves all expressions re-
ferring to schema objects such as tables or views with their
column names and types. The logical plan generator then
transforms the parse tree into a tree of basic logical query
operators such as scan, filter, project, etc. After the plan-
ning phase, we have a fully type-resolved logical query plan.
DuckDB keeps statistics on the stored data, and these are
propagated through the different expression trees as part of
the planning process. These statistics are used in the opti-
mizer itself, and are also used for integer overflow prevention
by upgrading types when required.

DuckDB’s optimizer performs join order optimization us-
ing dynamic programming [7] with a greedy fallback for
complex join graphs [11]. It performs flattening of arbitrary
subqueries as described in Neumann et al. [9]. In addition,
there are a set of rewrite rules that simplify the expression
tree, by performing e.g. common subexpression elimination

https://github.com/cwida/duckdb

DuckDB: an Embeddable Analytical Database SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

and constant folding. The result of this process is the opti-
mized logical plan for the query. The physical planner trans-
forms the logical plan into the physical plan, selecting suit-
able implementations where applicable. For example, a scan
may decide to use an existing index instead of scanning the
base tables based on selectivity estimates, or switch between
a hash join or merge join depending on the join predicates.

DuckDB uses a vectorized interpreted execution engine [1].
This approach was chosen over Just-in-Time compilation
(JIT) of SQL queries [8] for portability reasons. JIT engines
depend on massive compiler libraries (e.g. LLVM) with ad-
ditional transitive dependencies. DuckDB uses vectors of a
fixed maximum amount of values (1024 per default). Fixed-
length types such as integers are stored as native arrays.
Variable-length values such as strings are represented as a
native array of pointers into a separate string heap. NULL
values are represented using a separate bit vector, which
is only present if NULL values appear in the vector. This
allows fast intersection of NULL vectors for binary vector
operations and avoids redundant computation. To avoid ex-
cessive shifting of data within the vectors when e.g. the data
is filtered, the vectors may have a selection vector, which is
a list of offsets into the vector stating which indices of the
vector are relevant [1]. DuckDB contains an extensive library
of vector operations that support the relational operators,
this library expands code for all supported data types using
C++ code templates.
The execution engine executes the query in a so-called

“Vector Volcano” model. Query execution commences by pulling
the first “chunk” of data from the root node of the physical
plan. A chunk is a horizontal subset of a result set, query
intermediate or base table. This node will recursively pull
chunks from child nodes, eventually arriving at a scan oper-
ator which produces chunks by reading from the persistent
tables. This continues until the chunk arriving at the root is
empty, at which point the query is completed.

DuckDB provides ACID-compliance throughMulti-Version
Concurrency Control (MVCC). We implement HyPer’s se-
rializable variant of MVCC that is tailored specifically for
hybrid OLAP/OLTP systems [10]. This variant updates data
in-place immediately, and keeps previous states stored in a
separate undo buffer for concurrent transactions and aborts.
MVCC was chosen over simpler schemes such as Optimistic
Concurrency Control because, even though DuckDB’s main
use case is analytics, modifying tables in parallel was still an
often-requested feature in the past.
For persistent storage, DuckDB uses the read-optimized

DataBlocks storage layout [5]. Logical tables are horizon-
tally partitioned into chunks of columns which are com-
pressed into physical blocks using light-weight compression
methods. Blocks carry min/max indexes for every column
allowing to quickly determine whether they are relevant to

Dataset Size

Live
Metrics

SQLite MonetDBLite HyPer DuckDB

Figure 2: Demonstration setup schematic

a query. In addition, blocks carry a lightweight index for
every column, which allows to restrict the amount of values
scanned even further [5].

3 DEMONSTRATION SCENARIO
In our interactive demonstration scenarios, we would like
to showcase two major advantages of DuckDB: The ability
to process large data sets on restricted hardware resources
combined with the benefit of embedded operations.

Our demonstration is setup on a table on which a screen,
a large dial and four identical benchmark computers are laid
out. Each computer runs a different DBMS: SQLite, MonetD-
BLite, HyPer and DuckDB. Each database is pre-loaded with
the TPC-H benchmark tables, chosen because the audience
is likely familiar with this schema. Computers are connected
using Ethernet to a fifth “management” computer which can
be used to configure a query that is run in repetition on the
four benchmark computers. The screen shows real-time met-
rics from all four benchmark computers, at least the query
completion rate (QpS) and memory pressure. The dial on the
table controls the amount of input data read for the currently
configured query.
We propose two demonstration scenarios, a “teaser” and

a “drilldown” scenario: For the “teaser” scenario, a suitable
query is pre-configured on the benchmark computers. The
audiencewill be invited to turn the physical dial to increase/de-
crease the amount of data that is read from the fact tables.
This will immediately influence intermediate and result set
sizes of the pre-configured querywhichwill also immediately
impact the metrics shown on the screen. Figure 2 illustrates
this setup.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands Mark Raasveldt and Hannes Mühleisen

While for very small data sets all systems will show com-
parable behavior, only DuckDB will be able to continue func-
tioning for larger ones. SQLite will begin to suffer from its
row-based execution model and MonetDBLite begins to suf-
fer from excessive intermediate result materialization due to
its bulk processing model. While HyPer is extremely fast in
processing queries, it will not be able to transfer result sets
as quickly as DuckDB using its socket client protocol [12].
For the “drilldown” scenario, we invite the audience to

propose their own query to be configured into the benchmark
computers. This will allow direct appraisal of DuckDB’s
performance, without the demonstration authors being able
to cherry-pick queries where DuckDB excels. Again, the
audience member that has proposed the query will then be
able to turn the dial to increase the amount of data read by
the query and observe the impact on the four systems in
real-time.

4 CURRENT STATE AND NEXT STEPS
As of this writing, DuckDB runs all TPC-H queries and all but
two TPC-DS queries. We expect complete TPC-DS coverage
by the time the demonstration is presented. DuckDB also
already completes most of SQLite’s SQL logic test suite that
contains millions of queries.

Immediate next steps for DuckDB are completion of Dat-
aBlocks storage scheme and cardinality estimating. A buffer
manager is also not yet implemented, but will be. DuckDB
already supports inter-query parallelism but intra-query par-
allelism will be added as well. We plan to implement a work
stealing scheduler to balance resources between short and
long running queries. A special consideration is also to allow
balancing resource usage with the host application, a special
issue for embedded operations.
A more advanced future direction is self-checking. We

have learned to distrust the hardware the database is running
on. This is particularly relevant in the edge computing use
case, where hardware failures are to be commonplace. One
approach is to keep checksums on all persistent and inter-
mediate data and piggy-back checksum verification on scan
operators. This might be possible without a significant per-
formance impact. A vectorized engine is particularly suited
for this since a chunk of data typically fits in the CPU cache
and additional passes are not requiring RAM access. Another
approach to increasing trust in the hardware is inspired by
video game developers which periodically run sanity check
computation to ensure correct operation of CPU and RAM.

Acknowledgements
We would like to thank all past, current and future contribu-
tors to DuckDB at the CWI Database Architectures Group
and elsewhere. We are also particularly indebted to the TUM
database group for their papers on query optimization, win-
dow functions, storage and concurrency control that we used
to implement DuckDB.

REFERENCES
[1] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100:

Hyper-Pipelining Query Execution. In CIDR 2005, Second Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 4-7, 2005. 225–237. http://cidrdb.org/cidr2005/papers/P19.pdf

[2] Lukas Fittl. 2019. C library for accessing the PostgreSQL parser outside
of the server environment. https://github.com//fittl/libpg_query.

[3] Richard Hipp. 2019. Database File Format. https://www.sqlite.org/
fileformat.html.

[4] Richard Hipp. 2019. Most Widely Deployed and Used Database Engine.
https://www.sqlite.org/mostdeployed.html.

[5] Harald Lang, Tobias Mühlbauer, Florian Funke, et al. 2016. Data
Blocks: Hybrid OLTP and OLAP on Compressed Storage using both
Vectorization and Compilation. In Proceedings of the 2016 Interna-
tional Conference on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016. 311–326. https:
//doi.org/10.1145/2882903.2882925

[6] Wes McKinney. 2010. Data Structures for Statistical Computing in
Python. In Proceedings of the 9th Python in Science Conference, Stéfan
van der Walt and Jarrod Millman (Eds.). 51 – 56.

[7] GuidoMoerkotte and Thomas Neumann. 2008. Dynamic programming
strikes back. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2008, Vancouver, BC, Canada,
June 10-12, 2008. 539–552. https://doi.org/10.1145/1376616.1376672

[8] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans
for Modern Hardware. PVLDB 4, 9 (2011), 539–550. https://doi.org/10.
14778/2002938.2002940

[9] Thomas Neumann and Alfons Kemper. 2015. Unnesting Arbitrary
Queries. InDatenbanksysteme für Business, Technologie undWeb (BTW),
16. Fachtagung des GI-Fachbereichs "Datenbanken und Informationssys-
teme" (DBIS), 4.-6.3.2015 in Hamburg, Germany. Proceedings. 383–402.
https://dl.gi.de/20.500.12116/2418

[10] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast
Serializable Multi-Version Concurrency Control for Main-Memory
Database Systems. In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data, Melbourne, Victoria, Aus-
tralia, May 31 - June 4, 2015. 677–689. https://doi.org/10.1145/2723372.
2749436

[11] Thomas Neumann and Bernhard Radke. 2018. Adaptive Optimization
of Very Large Join Queries. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). ACM, New York,
NY, USA, 677–692. https://doi.org/10.1145/3183713.3183733

[12] Mark Raasveldt and Hannes Mühleisen. 2017. Don’t Hold My Data
Hostage - A Case For Client Protocol Redesign. PVLDB 10, 10 (2017),
1022–1033. https://doi.org/10.14778/3115404.3115408

[13] Mark Raasveldt and Hannes Mühleisen. 2018. MonetDBLite:
An Embedded Analytical Database. CoRR abs/1805.08520 (2018).
arXiv:1805.08520 http://arxiv.org/abs/1805.08520

[14] Hadley Wickham, Romain François, Lionel Henry, and Kirill Müller.
2018. dplyr: A Grammar of DataManipulation. https://CRAN.R-project.
org/package=dplyr R package version 0.7.8.

http://cidrdb.org/cidr2005/papers/P19.pdf
https://github.com//fittl/libpg_query
https://www.sqlite.org/fileformat.html
https://www.sqlite.org/fileformat.html
https://www.sqlite.org/mostdeployed.html
https://doi.org/10.1145/2882903.2882925
https://doi.org/10.1145/2882903.2882925
https://doi.org/10.1145/1376616.1376672
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
https://dl.gi.de/20.500.12116/2418
https://doi.org/10.1145/2723372.2749436
https://doi.org/10.1145/2723372.2749436
https://doi.org/10.1145/3183713.3183733
https://doi.org/10.14778/3115404.3115408
http://arxiv.org/abs/1805.08520
http://arxiv.org/abs/1805.08520
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

	Abstract
	1 Introduction
	2 Design and Implementation
	3 Demonstration Scenario
	4 Current State and Next Steps
	References

