Runtime-Extensible Parsers

Hannes Miihleisen and Mark Raasveldt
DuckDB Labs
Amsterdam, The Netherlands
firstname@duckdblabs.com

ABSTRACT

Despite their central role in processing queries, parsers have not
received any noticeable attention in the data systems space. State-
of-the art systems are content with ancient old parser generators.
These generators create monolithic, inflexible and unforgiving
parsers that hinder innovation in query languages and frustrate
users. We argue that parsers should be rewritten using modern
abstractions like Parser Expression Grammars (PEG), which allow
dynamic changes to the accepted query syntax and better error
recovery. In this paper, we discuss how parsers could be re-designed
using PEG, and validate our recommendations using experiments
for both effectiveness and efficiency.

1 INTRODUCTION

The parser is the DBMS component that is responsible for turning a
query in string format into an internal representation which is usu-
ally tree-shaped. The parser defines which queries are going to be
accepted at all. Every single SQL query starts its journey in a parser.
Despite its prominent position in the stack, very little research has
been published on parsing queries for data management systems.
There seems to have been very little movement on the topic in the
past decades and their implementations are largely stuck in sixty
year old abstractions and technologies.

The constant growth of the SQL specification with niche features
(e.g. support for graph queries in SQL/PGQ or XML support) as well
as the desire to support alternative query notations like dplyr [18],
piped SQL [15], PRQL! or SaneQL [13] makes monolithic parsers
less and less practical: In their traditional design, parser construc-
tion is a compile-time activity where enormous grammar files are
translated into state machine transition lookup tables which are
then baked in a system binary. Having those always be present in
the parser might be wasteful especially for size-conscious binary
distributions like WebAssembly (Wasm).

Many if not most SQL systems use a static parser created using
a YACC-style [10] parser toolkit: We are able to easily confirm this
for open-source systems like PostgreSQL and MySQL/MariaDB.
From analyzing their binaries’ symbol names, we also found indi-
cations that Oracle, SQL Server and IBM Db2 use YACC. Internally,
YACC and its slightly more recent variant GNU Bison as well as
the "Lemon" parser generator used by SQLite all use a “single look-
ahead left-to-right rightmost derivation” LALR(1) parser generator.
This generator translates a formal context-free set of grammar rules

!https://prql-lang.org/

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2025. 15th Annual Conference
on Innovative Data Systems Research (CIDR ’25). January 19-22, Amsterdam, The
Netherlands

SelectStatement
SelectClause FromClause WhereClause
\ \
TableRef LargerThan

ColumnRef ColumnRef

| | |
o

ne1n neon ColumnRef Literal

\
"c3" 42

Figure 1: Example AST

in Extended Backus-Naur Form (EBNF) to a parser state machine.
LALR parsers [4] are a more space-efficient specialization of LR(k)
parsers as first described by Knuth [8]. But in effect, the most ad-
vanced SQL systems of 2024 use parser technology from the 1960s.
Given that the rest of data management systems have been greatly
overhauled since this should raise the question why the parser did
not receive any serious engineering attention.

Database systems are moving towards becoming ecosystems in-
stead of pre-built monoliths. Much of the innovation in the Post-
greSQL, SQLite, and DuckDB communities now comes from exten-
sions [7], which are shared libraries that are loaded into the database
system at run-time to extend the database system with features
like vector similarity search, geospatial support, file systems, or
graph processing. Bundling all those features upfront would be
difficult due to additional binary size, external dependencies. In
addition, they are often maintained independently by their commu-
nities. Thus far, at least in part due to the ubiquity of YACC-style
parsers, those community extensions have been restricted from
extending syntax. While this is also true in other ecosystems like
Python, the design of SQL with its heavy focus on syntax and not
function calls makes the extensions second-class citizens that have
to somehow work around the restrictions by the original parser,
e.g. by embedding custom expressions in strings.

We propose to re-think data management system parser design
to create modern, extensible parsers, which allow a dynamic con-
figuration of the accepted syntax at run-time, for example to allow
syntax extensions, new statements, or to add entirely new query
languages. This would allow to break up the monolithic grammars
currently in use and enable more creativity and flexibility in what
syntax a data management system can accept, both for industrial
and research use. Extensible parsers allow for new grammar fea-
tures to be easily integrated and tested, and can also help bridge the
gap between different SQL dialects by adding support for the dialect
of one system to the parser of another. Conversely, it might also be
desirable in some use cases to restrict the acceptable grammar, e.g.

https://prql-lang.org/

CIDR’24, January 19-22, 2025, Amsterdam, The Netherlands

to restrict the complexity of queries, or to enforce strict compliance
with the SQL standard.

Modernizing parser infrastructure also has additional benefits:
One of the most-reported support issues with data management
systems are unhelpful syntax errors. Some systems go to great
lengths to try to provide a meaningful error message, e.g. “this
column does not exist, did you mean ..”, but this is typically limited
to resolving identifiers following the actual parsing. YACC-style
parsers exhibit “all-or-nothing” behavior, the entire query or set of
queries either is accepted entirely or not at all. This is why queries
with actual syntactical errors (e.g. “SELEXT” instead of “SELECT”
are usually harshly rejected by a DBMS. MySQL for example is
notorious for its unhelpful error messages:

“You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to
use near 'SELEXT’ at line 1.”

In this paper, we make the following contributions:

e We describe the current state of parsers in data management
systems

e We propose to switch to run-time generated parsers

e We present an initial design of a runtime-extensible SQL
parser

e We perform proof-of-concept functionality and efficiency
experiments using a prototype SQL parser

The rest of this paper is structured as follows: Section 2 intro-
duces parser technology background. Section 3 describes our pro-
posal to use Parsing Expression Grammars (PEG) to build an exten-
sible SQL parser. Section 4 contains a description of our prototype
SQL parser and several experimental results. Finally, Section 5 con-
cludes this paper.

2 PARSER BACKGROUND

Parsing is the first step in the “textbook” database system design.
An arbitrary query arrives from the user, e.g. via API call or client
protocol. The query is then parsed into an abstract syntax tree.
Once parsed, we can assume that the query is syntactically correct.
Most dreaded syntax errors originate from this step.

In the subsequent binding step, the symbolic identifiers in the
syntax tree are bound to the available types, functions, schema,
table, and column names etc. At this point the query is semantically
correct and execution failures are typically issues in the actual table
data, e.g. casting errors. Next various planning, optimization and
execution steps follow. In the following, we will focus exclusively
on the transformation between input SQL string and abstract syntax
tree, i.e. the actual parsing.

Parsing of a formal language, be it SQL or Python, consists of
two parts: Lexical Analysis (also called the “lexing” or “tokeniza-
tion”) and Syntactic Analysis (also confusingly called the “Parser”
itself) [1].

Lexical Analysis splits an opaque input string into a list of still-
opaque “tokens”. Often, regular expressions are used to define what
are considered valid tokens. For example, the SQL query "SELECT
cl, c2 FROM t1 WHERE c3 > 42" could be tokenized to the
list "SELECT", "c1", "c2", "FROM", "t1", "WHERE", "c3",
"> "42" with " denoting token boundaries. As can be seen, this
lexer removes the white space present in the original queries but

Hannes Miihleisen and Mark Raasveldt

it can also be used to e.g. strip comments. There is no analysis of
the parsed tokens, for example, the lexer would happily tokenize
"SELEXT 42" or "FROM t1 SELECT c1, c2", both of which are
not usually allowed in SQLZ.

Note that there are types of parsers that do not have a separate
lexical analysis step, in that case, syntax analysis is performed on
a character-by-character level. Furthermore, lexical analysis does
not actually need to materialize the entire token list for a given
input but can expose an iterator-style interface to return tokens on
a one-by-one basis.

Syntactic Analysis interprets the list of tokens according to a
defined formal grammar and decides whether the list is acceptable
syntax. The result of parsing typically is a hierarchical abstract syn-
tax tree (AST). The example query above could be transformed into
the exemplary AST in Figure 1 given a hypothetical SQL grammar:

As an example for a SQL grammar, Figure 2 is a simplified snippet
of the 20.000 lines (!) of Bison grammar in Postgres that shows the
crucial simple_select rule that interprets SELECT queries:

from_clause:
FROM from_list

from_list:
table_ref | from_list ',' table_ref

where_clause:
WHERE a_expr

group_clause:
GROUP_P BY set_quantifier group_by_list

simple_select:

SELECT opt_all_clause opt_target_list
into_clause from_clause where_clause
group_clause having_clause window_clause

Figure 2: Postgres YACC Grammar Snippet

Given the token list and the grammar, there are now two main
ways to decide whether the input matches the grammar: Top-down
and Bottom-up [1]. In top-down parsing, the formal grammar rules
are expanded top-down from the starting symbol to eventually
match the entire input token list. In the example above, the starting
symbol would be simple_select. In contrast, bottom-up parsers
will start with the list of input tokens and try to combine (“reduce”)
those tokens into higher-level symbols to eventually arrive at the
start symbol. If this succeeds, the input is accepted. In general,
bottom-up parser were long considered to be more time and space
efficient than top-down parsers [1]. YACC’s LALR(1) parser is an
example of a bottom-up parser [4].

2DuckDB actually allows the FROM-first syntax, see https://duckdb.org/docs/sql/query_
syntax/from

https://duckdb.org/docs/sql/query_syntax/from
https://duckdb.org/docs/sql/query_syntax/from

Runtime-Extensible Parsers

2.1 YACC Internals

In YACC, tokens from the lexical analysis step are read and pushed
(“shifted”) onto a stack. Once the tokens on the stack match the
components of a grammar rule (also called a “grouping”), the tokens
are “reduced” on the stack to the left hand side of the grammar rule.
This is efficiently implemented by generating a (possibly large) look-
up table during grammar compilation for each possible combination
of tokens and groupings on the stack [3]. At each step, the parser can
use the current stack as an index into the look-up table and retrieve
the appropriate action (e.g. “read next token”, “apply reduction xyz”,
or “produce error”). When a token is read from the input, it is not
immediately shifted onto the stack to allow the single look-ahead to
disambiguate if necessary. On reduction, a so-called “action” can be
invoked. Actions are actual program code (with some placeholders)
that are inserted into the generated parser code and can perform
arbitrary transformations of the reduced tokens, e.g. creating parse
tree objects. Postgres’ parser for example makes heavy use of reduce
actions to create the abstract syntax tree for the query (PGNode).

If the parser cannot decide whether tokens should be reduced
or additional tokens should be read from the input, the grammar
is undecidable and a so-called “shift-reduce conflict” is thrown at
compile time. Similarly, if two rules could be applied, a “reduce-
reduce conflict” is present [3]. When adding new syntax, avoiding
shift-reduce conflicts is a common nuisance that increases the com-
plexity and effort to extend the parser. In certain cases, it is even
impossible to add new desired syntax because there is no way to
do so without triggering conflicts.

In the case of Postgres, YACC is only barely able to parse its
SQL dialect cleanly. There are already several hacks in the lexical
analyzer because in some cases its SQL grammar requires more
than a single token look-ahead to be conflict-free, for example
due to the multi-token keywords like ORDER BY. This introduces
complications due to possible comments in between tokens, e.g.
ORDER /* comment */ BY.To work around limitations of the single-
token look-ahead the lexical analyzer these multi-token keywords
are explicitly detected and replaced by a single token.

2.2 Parsing Expression Grammar

Parsing Expression Grammar (PEG) parsers represent a more mod-
ern approach to parsing [6]. PEG parsers are top-down parsers that
effectively generate a recursive-descent style parser from a gram-
mar. Through the “packrat” memoization technique PEG parsers ex-
hibit linear time complexity in parsing at the expense of a grammar-
dependent amount of extra memory. The biggest difference from
a grammar author perspective is the choice operator where multi-
ple syntax options can be matched. In LALR parsers options with
similar syntax can create ambiguity and reduce conflicts. In PEG
parsers the first matching option is always selected. PEG parsers
cannot be ambiguous by design [6].

As their name suggests, parsing expression grammar consists
of a set of parsing expressions. Expressions can contain references
to other rules, or literal token references, both as actual strings or
character classes similar to regular expressions. Expressions can
be combined through sequences, quantifiers, optionals, groupings
and both positive and negative look-ahead. Each expression can
either match or not, but it is required to consume a part of the input

CIDR’24, January 19-22, 2025, Amsterdam, The Netherlands

if it matches. Expressions are able to look ahead and consider the
remaining input but are not required to consume it. Lexical analysis
is typically part of the PEG parser itself, which removes the need
for a separate step.

One big advantage is that PEG parsers do not require a compilation
step where the grammar is converted to for example a finite state
automaton based on lookup tables. PEG can be executed directly
on the input with minimal grammar transformation, making it
feasible to re-create a parser at runtime. PEG parsers are gaining
popularity, for example, the Python programming language has
recently switched to a PEG parser [17].

Another big advantage of PEG parsers is error handling: [11]
describes a practical technique where parser rules are annotated
with “recovery” actions, which can 1) show more than a single error
and 2) annotate errors with a more meaningful error message.

A possible disadvantage of memoized packrat parsing is the
memory required for memoization: The amount required is pro-
portional to the input size, not the stack size. Of course, memory
limitations have relaxed significantly since the invention of LALR
parsers sixty years ago and queries typically are not “Big Data”
themselves.

Expression <- ColumnReference / StringlLiteral /

OperatorExpression
OperatorExpression <- Expression Operator Expression
ColumnReference <- '"' [*"]x '"!
Stringliteral <- "\'"'" [*\"]x "\"'
Operator <- ('AND' / 'OR' / '=' / '<' / '>")

Figure 3: “Illegal” Left-Recursive PEG Rules

Canonical PEGs have one systemic restriction: Grammars cannot
be left-recursive [6]. Consider the example in Figure 3: We wish to
define a simple expression grammar, where expressions can either
be column references enclosed in double quotes (e.g. "my_column"),
a string literal in single quotes (e.g. 'my_literal') or a binary
comparison of two other expressions. While this seems reasonable,
the recursive descent that occurs while parsing this will lead to
infinite recursion, because an Expression can contain another one
without consuming input. This will go on ad nauseam (or until the
stack overflows).

OperatorExpression <- Expression (Operator Expression)*
Expression <- ColumnReference / StringlLiteral

Figure 4: Non Left-Recursive PEG Rules

This issue can canonically be fixed by adding another rule with an
optional repeat clause like in Figure 4. Now, OperatorExpression
is not just another Expression but instead a separate, higher-level
concept just to avoid left recursion. However, this becomes chal-
lenging for some SQL constructs like x BETWEEN y AND z, where
the first part x can in principle be any other kind of expression,
including another BETWEEN expression. This necessitates additional
grammar rules where some expressions are expressed outright in
some situations, and others require additional tokens in the input
to disambiguate (in SQL, usually parentheses).

CIDR’24, January 19-22, 2025, Amsterdam, The Netherlands

This issue can be addressed by limiting the stack depth of the
generated recursive call to the number of detected operator tokens.
In essence, if the maximum stack depth has been reached, the gen-
erated parser will no longer choose the recursive rule to instantiate
an expression, but will instead force instantiation of the other alter-
natives if present. There exists an efficient implementation of this
technique by inverting the call stack and with memoization [9, 12].

In the following, we will describe how PEG can be used to build
a runtime-extensible SQL parser.

3 EXTENDING SQL

SQL has long been extensible at run-time — in a way: Most systems
do for example not hard-code the list of available scalar, aggregate,
window, or table-producing functions in the parser. Instead, the
available functions are dynamically resolved in the binding step,
with the parser only returning an opaque function name. Function
definitions can either come from an internal catalog or be supplied
by the user. For example, Postgres supports the CREATE FUNCTION
syntax which allows creating a function, e.g. written in the internal
PL/pgSQL language or as a symbol in an external binary. Once
defined, the function can be used in queries.

Due to the idiosyncrasies of SQL this approach can be chal-
lenging already. For example, whether a function is a scalar or an
aggregate function dictates whether a query contains an aggrega-
tion or not, that major decision hence needs to be deferred until
after binding. With generic function binding, the query SELECT ()
FROM t1 contains a top-level aggregate if f is an aggregate.

Similar to functions, some SQL systems allow for the definition
of additional user-defined data types. For example, Postgres has
the CREATE TYPE syntax for this. Again, the available data types
are not hard-coded in the parser, but instead resolved dynamically
in the binding step. Some extensions for Postgres, for example
“pgvector”, also add additional types implicitly. One restriction with
user-defined types is that their literals need to be expressed within
SQL string literals with '...".

In principle, any new functionality could be added as table-
producing functions. For example, we could add support for the
Pipelined Relational Query Language (PRQL) like so:

SELECT * FROM
execute_prql('from invoices aggregate (count this)');

We can see that the foreign query language is embedded in a nor-
mal, “parseable” SQL query as a literal string. The execute_prql
function can take this string, execute as it wishes, and return an
intermediate table. However, there are severe usability issues with
this approach: There is little to no help with syntax highlighting or
auto-completion in an editor, and quotes will possibly have to be
escaped. It is also impossible to combine new and existing query
language features without duplicating large parts of parsing and
execution infrastructure in the table-producing function.

Because of the rigidity of SQL parsers, foreign language inte-
grations via strings like in the example above are quite common.
Standardization proponents will argue that making query languages
extensible will lead to even more substantial deviations from the
standard. This is of course a valid concern and the standardiza-
tion of SQL has been a general success story. However, adding
syntax by passing strings to “magic” functions merely moves the

Hannes Miihleisen and Mark Raasveldt

incompatibility to another layer, namely the function resolution
and execution. It is likely preferable to fail early in those cases. In
addition, there is a lot of syntax that is standardized (e.g. SQL/PGQ)
that a database system might not want to enable by default but
instead enable through an extension that modifies the parser to
accept the syntax. A clear downside of extending syntax is when
queries pass through generic SQL middleware which is going to be
unaware of any non-standard extensions.

3.1 Adding New Statements

Let’s assume we would want to add a new top-level UNPIVOT state-
ment to turn columns into rows to a SQL dialect. UNPIVOT should
work on the same level as e.g. SELECT, for example to unpivot a
table t1 on a specific list of columns or all columns (*), we would
like to be able to write:

UNPIVOT t1 ON (cl1, c2, c3);
UNPIVOT t1 ON (*);

It is clear that we would have to somehow modify the parser
to allow this new syntax. However, when using a YACC parser,
this would require modifying the grammar, re-running the parser
generator, hoping for the absence of shift-reduce conflicts, and
then recompiling the actual database system. However, this is not
practical at run-time which is when extensions are loaded, ideally
within milliseconds.

To partially address this issue, DuckDB [14] supports a work-
around for this problem so that extensions can add top-level state-
ments, so-called “fallback parsers”. Fallback parsers are additional
parsing functions that can be registered by extensions. Whenever
the “normal” parser would reject a statement, it invokes the fallback
parser in turn. The fallback parsers can then choose to accept a
particular statement and return a simple query plan. This method
is for example used by the MotherDuck extension [2].

However, it is impossible to accept statements allowed by fallback
parsers in (for example) subqueries that are being read by the main
parser without duplicating the entire original parser. Even if the
original parser were duplicated, consider the case where multiple
extensions wish to register different syntax extensions, since they
are likely unaware of each other mixing statements is impossible.

It might be possible to ship the grammar files together with a
modified YACC parser generator (as of yet non-existent “libbison”)
as part of the database runtime. Then, extensions could append
new grammar rules to the grammar, and invoke the parser genera-
tor again to create the parser state transition look-up tables. This
approach could work for multiple extensions registering multiple
syntax extensions, and it would even be possible to mix statements
defined by different extensions. This process would be able to check
the added syntax by rejecting any additions that create conflicts.
However, the design of YACC is heavily based on the assumption
that the parser generator creates e.g. C source files that are then
run through an actual compiler to produce the actual parser. Again,
in theory, since some DBMSs already contain full-blown compilers,
they could use those compilers to re-generate their parsers. It is
likely more effective to switch to a modern PEG parser which can
be evaluated without compile-time grammar pre-processing.

Runtime-Extensible Parsers

3.2 Extending Existing Statements

Let’s now assume we would want to modify the SELECT syntax to
add support for SQL/PGQ graph matching patterns [5]. Figure 5 is
an example query in SQL/PGQ that finds the university name and
year for all students called Bob:

SELECT study.classYear, study.name

FROM GRAPH_TABLE (pg,

MATCH (a:Person WHERE a.firstName ='Bob')-
[s:studyAt]->(u:University)

COLUMNS (s.classYear, u.name)) study;

Figure 5: SQL/PGQ Example

We can see that this new syntax adds the GRAPH_TABLE clause
and the pattern matching domain-specific language (DSL) within.
To add support for this syntax to a SQL parser at runtime, we need
to modify the grammar for the SELECT statement itself. This is
fairly straightforward when using a PEG. We replace the rule that
describes the FROM clause to also accept a sub-grammar starting at
the GRAPH_TABLE keyword following by parentheses. Because the
parser does not need to generate a state machine, we are immedi-
ately able to accept the new syntax.

4 PROTOTYPE & EXPERIMENTS

To perform experiments on parser extensibility, we have imple-
mented an - admittedly simplistic — experimental prototype PEG
parser for enough of SQL to parse all the TPC-H and TPC-DS
queries. This grammar is compatible with the cpp-peglib single-
header C++17 PEG execution engine>.

cpp-peglib uses a slightly different grammar syntax, where /
is used to denote choices. The symbol ? shows an optional element,
and * defines arbitrary repetition. The special rules Parens() and
List() are grammar macros that simplify the grammar for com-
mon elements. The special %whitespace rule is used to describe
tokenization.

Below is an abridged version of our experimental SQL grammar,
with the Expression and Identifier syntax parsing rules omitted
for brevity:

All experiments were run on a 2021 MacBook Pro with the M1
Max CPU and 64 GB of RAM. The experimental grammar and the
code for experiments are available on GitHub?.

Loading the base grammar from its text representation into the
cpp-libpeg grammar dictionary with symbolic rule representa-
tions takes 3 ms. In case that delay should become an issue, the
library also allows to define rules programmatically instead of as
strings. It would be straightforward to pre-compile the grammar
file into source code for compilation, YACC-style. While somewhat
counter-intuitive, it would reduce the time required to initialize the
initial, unmodified parser. This difference matters for some applica-
tions of e.g. DuckDB where the database instance only lives for a
few short milliseconds.

For the actual parsing, YACC parses TPC-H Query 1 in ca. 0.03 ms,
where cpp-libpeg takes ca. 0.3 ms, a ca. 10X increase. To further

3https://github.com/yhirose/cpp-peglib
“https:/github.com/hannes/peg-parser-experiments

CIDR’24, January 19-22, 2025, Amsterdam, The Netherlands

Statements <- SingleStmt (';' SingleStmt)* ';'=%
SingleStmt <- SelectStmt
SelectStmt <- SimpleSelect (SetopClause SimpleSelect)x*
SetopClause <-
('UNION' / 'EXCEPT' / '"INTERSECT') 'ALL'?
SimpleSelect <- WithClause? SelectClause FromClause?
WhereClause? GroupByClause? HavingClause?
OrderByClause? LimitClause?
WithStatement <- Identifier 'AS' SubqueryReference
WithClause <- 'WITH' List(WithStatement)
SelectClause <- 'SELECT' ('x' / List(AliasExpression))
ColumnsAlias <- Parens(List(Identifier))
TableReference <-
(SubqueryReference 'AS'? Identifier ColumnsAlias?) /
(Identifier ('AS'? Identifier)?)
ExplicitJoin <- ('LEFT' / 'FULL')? 'OUTER'?
'JOIN' TableReference 'ON' Expression
FromClause <- 'FROM' TableReference
((',"' TableReference) / ExplicitJoin)=
WhereClause <- 'WHERE' Expression
GroupByClause <- 'GROUP' 'BY' List(Expression)
HavingClause <- 'HAVING' Expression
SubqueryReference <- Parens(SelectStmt)
OrderByExpression <- Expression ('DESC' / 'ASC')?
('NULLS" 'FIRST' / 'LAST')?
OrderByClause <- 'ORDER' 'BY' List(OrderByExpression)
LimitClause <- 'LIMIT' NumberLiteral
AliasExpression <- Expression ('AS'? Identifier)?
%whitespace <- [\t\n\rlx
List(D) <- D (',' D)*
Parens(D) <- '(' D ')’

Figure 6: Simple SQL grammar for PEG

stress parsing performance, we repeated all TPC-H and TPC-DS
queries six times to create a 36,840 line SQL script weighing in at
ca. 1 MB. Note that a recent study has found that the 99-percentile
of read queries in the Amazon Redshift cloud data warehouse are
smaller than 16.5 kB [16].

Postgres takes on average 24 ms to parse this file using YACC.
Note that this time includes the execution of grammar actions that
create Postgres’ parse tree. cpp-libpeg takes on average 266 ms
to parse the test file. However, our experimental parser does not
have grammar actions defined yet. When simulating actions by
generating default AST actions for every rule, parsing time increases
to 339 ms. Note that the AST generation is more expensive than
required, because a node is created for each matching rule, even if
there is no semantic meaning in the grammar at hand.

Overall, we can observe a ca. 10X slowdown in parsing perfor-
mance when using the cpp-1libpeg parser. However, it should be
noted that the absolute duration of those two processes is still tiny;
at least for analytical queries, sub-millisecond parsing time is more
than acceptable as parsing still only accounts for a tiny fraction of
overall query processing time. Furthermore, there are still ample
optimization opportunities in the experimental parsers we created
using an off-the-shelf PEG library. For example, the library makes

https://github.com/yhirose/cpp-peglib
https://github.com/hannes/peg-parser-experiments

CIDR’24, January 19-22, 2025, Amsterdam, The Netherlands

heavy use of recursive function calls, which can be optimized e.g.
by using a loop abstraction.

In the following, we present some experiments in extending the
prototype parser with support for new statements, entirely new
syntax and with improvements in error messages:

Adding the UNPIVOT Statement. In order to add UNPIVOT, we
have to define a grammar rule and then modify SingleStmt to
allow the statement in a global sequence of SQL statements. This is
shown below. We define the new UnpivotStatement grammar rule
by adding it to the dictionary, and we then modify the SingleStmt
rule entry in the dictionary to also allow the new statement.

UnpivotStatement <- 'UNPIVOT' Identifier
'"ON' Parens(List(Identifier) / '*')

SingleStmt <- SelectStatement / UnpivotStatement

Note that we re-use other machinery from the grammar like the
Identifier rule as well as the Parens() and List() macros to
define the ON clause. The rest of the grammar dictionary remains
unchanged. After modification, the parser can be re-initialized in
another 3 ms. Parser execution time was unaffected.

Extending SELECT with GRAPH_TABLE. Below we show a small
set of grammar rules that are sufficient to extend our experimental
parser with support for the SQL/PGQ GRAPH_TABLE clause and the
containing property graph patterns. With this addition, the parser
can parse the query in Figure 5. Parser construction and parser
execution timings were unaffected.

Name <- (Identifier? ':' Identifier) / Identifier
Edge <- ('=' / '<=') '[' Name ']' ('->" / '=-")
Pattern <- Parens(Name WhereClause?) Edge
Parens(Name WhereClause?)

PropertyGraphReference <- 'GRAPH_TABLE'i '('

Identifier ','

'MATCH'i List(Pattern)

'"COLUMNS'i Parens(List(ColumnReference))

')' Identifier?

TableReference <-
PropertyGraphReference / ...

Adding dplyr Syntax Support. dplyr, the “Grammar of Data
Manipulation”, is the de facto standard data transformation lan-
guage in the R Environment for Statistical Computing [18]. The
language uses function calls and a special chaining operator (%>%)
to combine operators. Below is an example dplyr query:

df %>%
group_by(species) %>%
summarise(
n=n(Q),
mass = mean(mass, na.rm = TRUE)
) %>%
filter(n > 1, mass > 50)

Hannes Miihleisen and Mark Raasveldt

With an extensible parser, it is feasible to add support for query
languages like dplyr to a SQL parser.

Below is a simplified grammar snippet that enables our SQL
parser to accept the dplyr example from above.

DplyrStatement <- Identifier Pipe Verb (Pipe Verb)*
Verb <- VerbName Parens(List(Argument))

VerbName <- 'group_by' / 'summarise' / 'filter'
Argument <- Expression / (Identifier '=' Expression)
Pipe <- '%>%'

SingleStmt <- SelectStatement /
UnpivotStatement / DplyrStatement

It is important to note that the rest of the experimental SQL
parser still works, i.e. the dplyr syntax now also works. Parser
construction and parser execution timings were again unaffected.

Better Error Messages. As mentioned above, PEG parsers are
able to generate better error messages elegantly [11]. A common
novice SQL user mistake is to mix up the order of keywords in a
query, for example, the ORDER BY must come after the GROUP BY.
Assume an inexperienced user types the following query:

SELECT customer, SUM(sales)
FROM revenue

ORDER BY customer

GROUP BY customer;

By default, both the YACC and the PEG parsers will report a
similar error message about an “unexpected 'GROUP’ keyword”
with a byte position. However, with a PEG parser we can define a
“recovery” syntax rule that will create a useful error message. We
modify the OrderByClause from Figure 6 like so:

OrderByClause <- 'ORDER'i 'BY'i List(OrderByExpression)
%recover (WrongGroupBy)?

WrongGroupBy <- GroupByClause
{ error_message "GROUP BY must precede ORDER BY" }

Here, we use the %recover construct to match a misplaced GROUP
BY clause, re-using the original definition, and then trigger a custom
error message that advises the user on how to fix their query. And
indeed, when we parse the wrong SQL example, the parser will
output the custom message.

5 CONCLUSION AND FUTURE WORK

In this paper, we have proposed to modernize the ancient art of SQL
parsing using more modern parser generators like PEG. We have
shown how by using PEG, a parser can be extended at run-time at
minimal cost without re-compilation. In our experiments we have
demonstrated how minor grammar adjustments can fundamentally
extend and change the accepted syntax.

An obvious next step is to address the observed performance
drawback observed in our prototype. Using more efficient imple-
mentation techniques, it should be possible to narrow the gap in
parsing performance between YACC-based LALR parsers and a

Runtime-Extensible Parsers

dynamic PEG parser. Another next step is to address some detail
questions for implementation: For example, parser extension load
order should ideally not influence the final grammar. Furthermore,
while parser actions can in principle execute arbitrary code, they
may have to be restrictions on return types and input handling.

We plan to switch DuckDB’s parser, which started as a fork of
the Postgres YACC parser, to a PEG parser in the near future. As
an initial step, we have performed an experiment where we found
that it is possible to interpret the current Postgres YACC grammar
with PEG. This should greatly simplify the transitioning process,
since it ensures that the same grammar will be accepted in both
parsing frameworks.

ACKNOWLEDGMENTS

We would like to thank Torsten Grust and Gabor Szarnyas for
their valuable suggestions. We would also like to thank Carlo Pi-
ovesan for his translation of the Postgres YACC grammar to PEG.
Hannes Miihleisen is also affiliated with Centrum Wiskunde &
Informatica (CWI) and Radboud Universiteit Nijmegen. Hannes
Miihleisen gratefully acknowledges funding from the Dutch Re-
search Council (NWO), project “Responsible Decentralized Data
Architectures”.

REFERENCES

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles,
Techniques, and Tools. Addison-Wesley.

[2] R.]. Atwal, Peter A. Boncz, Ryan Boyd, et al. 2024. MotherDuck: DuckDB in the
cloud and in the client. In CIDR.

(11]

CIDR’24, January 19-22, 2025, Amsterdam, The Netherlands

Bison authors. 2024. GNU Bison 3.8.1 Documentation Chapter 5.2: Shift/Re-
duce Conflicts. https://www.gnu.org/software/bison/manual/html_node/Shift
002fReduce . html.

Franklin DeRemer. 1969. Practical translators for LR(k) languages. Ph.D. Disser-
tation. Massachusetts Institute of Technology, USA.

Alin Deutsch, Nadime Francis, Alastair Green, et al. 2022. Graph Pattern Matching
in GQL and SQL/PGQ. In SIGMOD. ACM, 2246-2258.

Bryan Ford. 2004. Parsing expression grammars: a recognition-based syntactic
foundation. In POPL. ACM, 111-122.

Abigale Kim. 2024. Survey and Evaluation of Database Management System
Extensibility. Technical Report CMU-CS-23-144. Carnegie Mellon University.
https://www.pdl.cmu.edu/PDL-FTP/Database/CMU-CS-23-144.pdf.

Donald E. Knuth. 1965. On the Translation of Languages from Left to Right. Inf.
Control. 8, 6 (1965), 607-639.

Nicolas Laurent and Kim Mens. 2015. Parsing expression grammars made practi-
cal. In SLE. ACM, 167-172.

Tony Mason and Doug Brown. 1990. lex & yacc. O'Reilly & Associates, Inc.,
USA.

Sérgio Medeiros and Fabio Mascarenhas. 2018. Syntax error recovery in parsing
expression grammars. In SAC (Pau, France) (SAC ’18). Association for Computing
Machinery, New York, NY, USA, 1195-1202.

Sérgio Medeiros, Fabio Mascarenhas, and Roberto Ierusalimschy. 2014. Left
recursion in Parsing Expression Grammars. Sci. Comput. Program. 96 (2014),
177-190.

Thomas Neumann and Viktor Leis. 2024. A Critique of Modern SQL and a
Proposal Towards a Simple and Expressive Query Language. In CIDR.

Mark Raasveldt and Hannes Miihleisen. 2019. DuckDB: An Embeddable Analyti-
cal Database. In SIGMOD.

Jeff Shute et al. 2024. SQL has problems. We can fix them: Pipe syntax in SQL.
Proc. VLDB Endow. 17, 12 (2024), 4051-4063.

Alexander van Renen, Dominik Horn, Pascal Pfeil, et al. 2024. Why TPC is not
enough: An analysis of the Amazon Redshift fleet. In VLDB 2024.

Guido van Rossum, Pablo Galindo, and Lysandros Nikolaou. 2020. PEP 617 —
New PEG parser for CPython. https://peps.python.org/pep-0617/.

Hadley Wickham, Romain Frangois, Lionel Henry, Kirill Miller, and Davis
Vaughan. 2023. dplyr: A Grammar of Data Manipulation. R package version 1.1.4,
https://github.com/tidyverse/dplyr.

https://www.gnu.org/software/bison/manual/html_node/Shift_002fReduce.html
https://www.gnu.org/software/bison/manual/html_node/Shift_002fReduce.html
https://www.pdl.cmu.edu/PDL-FTP/Database/CMU-CS-23-144.pdf
https://peps.python.org/pep-0617/

	Abstract
	1 Introduction
	2 Parser Background
	2.1 YACC Internals
	2.2 Parsing Expression Grammar

	3 Extending SQL
	3.1 Adding New Statements
	3.2 Extending Existing Statements

	4 Prototype & Experiments
	5 Conclusion and Future Work
	Acknowledgments
	References

