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ABSTRACT
We make the suggestion that instead of implementing cus-
tom index structures and query evaluation algorithms, IR
researchers should simply store document representations in
a column-oriented relational database and implement ranking
models using SQL. For rapid prototyping, this is particu-
larly advantageous since researchers can explore new scoring
functions and features by simply issuing SQL queries, with-
out needing to write imperative code. We demonstrate the
feasibility of this approach by an implementation of conjunc-
tive BM25 using two modern column stores. Experiments
on a web collection show that a retrieval engine built in
this manner achieves effectiveness and efficiency on par with
custom-built retrieval engines, but provides many additional
advantages, including cleaner query semantics, a simpler ar-
chitecture, built-in support for error analysis, and the ability
to exploit advances in database technology “for free”.

Categories and Subject Descriptors: H.3.4 [Information
Storage and Retrieval]: Systems and Software—Performance
Evaluation

Keywords: Relational Databases; BM25

1. INTRODUCTION
Information retrieval researchers and practitioners have

long implemented specialized, custom-built data structures
and query evaluation algorithms for document ranking [15].
Today, these techniques can be quite complex, especially with
“structured queries” that span multiple nested clauses with
a panoply of query operators [11]. We revisit the idea that
the information retrieval community can (and should!) make
use of general-purpose data management solutions, instead
of building specialized backend technology. We demonstrate
that storing posting lists as relations and expressing ranking
models as SQL queries is now a viable alternative to cus-
tom inverted indexes if we leverage modern column-oriented
relational databases (or ‘column stores’).
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The contribution of this work is to demonstrate empirically
that we can now safely delegate the data management needs
of IR engines to modern column stores without concerns
regarding efficiency. We show experimentally that an IR
engine built in this manner achieves not only effectiveness
and efficiency on par with custom-built retrieval engines,
but provides many additional advantages. This suggests a
somewhat radical message: IR researchers should stop writing
their own retrieval engines and just use column stores. We
advocate this approach especially for rapid prototyping—
when developing new scoring models, features functions,
etc.—but such an architecture has additional advantages.
Although we are not the first to make this claim, there have
been a number of developments since previous work that
make our design more attractive than before.

2. BACKGROUND AND RELATED WORK
What advantages does using a database for IR have? We

see many, beginning with a precise formal framework. As
more complex query operators are introduced for document
ranking, it sometimes becomes unclear how to properly score
documents, particularly in corner cases. Developers often
resort to heuristics and other shortcuts. Relational databases
provide a formal and theoretically-sound framework in which
to express any query evaluation algorithm—namely, rela-
tional calculus (or, practically, SQL). This forces IR re-
searchers to be precise about query semantics, which may
be especially useful when complex query operators are intro-
duced in document ranking.

Second, taking advantage of relational databases yields
a cleaner architecture. Almost all IR systems today are
monolithic agglomerations of components for text processing,
document inversion, integer compression, memory/disk man-
agement, query evaluation, etc. By offloading the storage
management to a relational database, we introduce a clean
abstraction (via SQL) between the “low-level” components
of the engine and the IR-specific components (e.g., learning
to rank). This (hopefully) reduces overall system complexity
and may allow different IR engines to inter-operate.

Third, retrieval systems can benefit from advances in data
management. Performance is a dominant preoccupation of
database researchers, who make regular breakthroughs that
propagate to the IR community (for example, PForDelta [17]
compression originated from database researchers). By using
relational databases, IR systems can benefit from future
advances more rapidly, and “for free”.

Fourth, a database provides integrated analytical tools
useful for error analysis. Consider a simple example, where



we wish to examine whether our scoring model has a length
bias. This might be accomplished by examining scatterplots
of length vs. retrieval scores. With a database, generating
these data can be accomplished with a straightforward join
between qrels (easy to store in the database), document
representations, and the results set. In contrast, with a
custom-built retrieval engine, one would need to write ad-
ditional code to dump out document lengths from internal
data structures and perform the join in an ad hoc fashion.
Furthermore, there is a rich ecosystem of external analytical
toolkits that are able to interface directly with relational
databases, which could also be helpful for IR researchers.

Finally, databases form a flexible rapid prototyping tool.
Many IR researchers do not really care about index structures
and query evaluation per se—they are merely means to an
end, such as assessing the effectiveness of a particular ranking
model or feature. In this case, forcing researchers to design
data structures and query evaluation algorithms is a burden.
Using a relational database, researchers can rapidly experi-
ment by issuing declarative SQL queries without needing to
write (error-prone) imperative or object-oriented code.

Since retrieval operates over collections of documents,
analytics-optimized (OLAP) relational databases are more
appropriate than transaction-optimized (OLTP) databases.
There are many similarities between query evaluation in
document retrieval and online analytical processing (OLAP)
tasks in modern data warehouses. Both frequently involve
scans, aggregations, and sorting. Thus, we believe that
column-oriented databases, which excel at OLAP queries, are
amenable to retrieval tasks. An overview of such databases
is beyond the scope of this work, but the basic insight is
to decompose relations into columns for storage and pro-
cessing [4]. This storage model allows us to mask random
access memory latencies and take full advantage of modern
hardware. We use two different column stores, MonetDB [2,
9] and VectorWise [16], to illustrate document ranking on a
portion of the ClueWeb12 collection.

We are not the first to claim that databases may have
something to offer for IR. Examples of early work include
[13, 10, 6]; key references on runtime efficiency are discussed
in a 2005 survey [3]. Perhaps the first ‘real’ SQL results for
IR queries were presented in [7], but at excessively high costs
in terms of the hardware required. More viable results were
presented in the TREC 2006 terabyte track, but the approach
required hand-written query plans [8]. Follow-up research by
the same group allowed the retrieval model to be expressed
at the conceptual level [5], however, using a rather ‘exotic’
query language based on array comprehensions. After all
these years, we have finally reached the state where database
engines can take on IR workloads expressed in standard SQL,
without forcing the database admin to resort to low-level
tuning. As far as we know, this paper is the first report of
experimental work where competitive IR results (in terms of
both efficiency and effectiveness) have been obtained using
standard relational database technology.

3. SYSTEM ARCHITECTURE
In a custom-built IR engine, a document collection must

first be processed (e.g., tokenized) and indexed before re-
trieval can be performed. In an architecture based on column
stores, there are equivalent steps: the collection must be pro-
cessed and loaded into the database prior to query evaluation.
This section provides details on our system architecture.

table: dict
termid term df
1 put 1
2 robe 1
3 wizard 1
4 hat 1

table: terms
termid docid pos

1 1 2
2 1 5
3 1 7
4 1 8

table: docs
docid name len

1 doc1 8

Figure 1: IR data structures in a relational database.

3.1 Document Processing and Loading
We take advantage of the massive scale-out capabilities

of Hadoop MapReduce to convert a document collection
into a collection of relational tables. Document processing
includes tokenization, stemming using the Krovetz stemmer,
and stopword removal. The stemmed and filtered terms are
mapped to integer ids and stored in a dictionary table. In the
main terms table, we store all terms in a document (by term
id), along with the position in which they occur. To give
a concrete example, consider the document doc1 with the
content “I put on my robe and wizard hat”. After stopword
removal, the relational tables generated from this document
are as shown in Figure 1. In more detail, these tables are
first generated as flat text files using a two-pass approach on
Hadoop; the first pass builds the term to term id mapping,
and the second pass builds the terms and the docs tables.
These flat text files are then bulk loaded into the database.

3.2 Query Evaluation
We implemented Okapi BM25 as an SQL query, but our

approach can be easily extended to other ranking functions.
Our experiments focused on conjunctive query evaluation,
where the document must contain all query terms; previous
work [1] has shown that this approach yields comparable
end-to-end effectiveness to disjunctive query evaluation, but
is faster. When scoring documents based on BM25, the
only score component that depends on the query is the term
frequency f(qi, D). An obvious opportunity for optimization
here would be to precalculate the term frequencies for each
term/document combination, since the positions of the terms
do not influence the ranking score for conjunctive queries. By
also sorting the terms table by term id (in effect performing
document inversion), the database is able to avoid scanning
the entire table and instead use binary search, with greatly
improved efficiency. The complete ranking function can be
expressed in SQL, shown in Figure 2.

We map conjunctive BM25 ranking to SQL in three parts:
First, we find the entries in the terms table for the query
terms (Lines 1 and 2). In this case, the query terms have
ids 10575, 1285, and 191.1 The second step calculates the
individual scores for all term/document combinations (Lines
4-13). To express the conjunctivity in the query, we filter this
intermediate result to include only combinations with exactly
three different term ids. (Lines 9-11). We collect information
about document ids and lengths (Line 12) as well as the
document frequencies of the terms (Line 13). We calculate
the individual BM25 scores for each term/document combi-
nation (Lines 5 and 6), sum the results and sort (Lines 14 to
16). With the term frequency precalculation optimization,

1It would be simple to “join in” the dictionary by term, but the
purpose of the shown query is to explain the basic concept.



WITH qterms AS  (SELECT termid, docid  FROM terms

 WHERE termid IN (10575, 1285, 191)),

subscores AS (

SELECT docs.docid, len, term_tf.termid,

tf, df, (log((45174549-df+0.5)/(df+0.5))* ((tf*(1.2+1)/(tf+1.2*(1-

0.75+0.75*(len/513.67)))))) AS subscore

FROM (SELECT termid,   docid,  COUNT(*) AS tf FROM qterms 

GROUP BY docid, termid) AS term_tf 

JOIN  (SELECT docid FROM qterms  

GROUP BY docid HAVING COUNT(DISTINCT termid) = 3) 

AS cdocs ON term_tf.docid=cdocs.docid

JOIN docs ON term_tf.docid=docs.docid

JOIN dict ON term_tf.termid=dict.termid)

SELECT name, score FROM (SELECT docid, sum(subscore) AS score 

FROM subscores GROUP BY  docid)  AS scores  JOIN  docs ON 

scores.docid=docs.docid ORDER BY score DESC LIMIT 1000;
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Figure 2: Conjunctive BM25 in SQL. The numbers printed
in bold are the only parts of the SQL query that depend on
the document collection and query terms.

the grouping of the qterms CTE (Line 8) would be replaced
by a straight selection from the term frequencies table. Note
that this approach can be extended to any scoring function
that is a sum of matching query terms. Other modifications
are straightforward: disjunctive query evaluation can be im-
plemented by replacing the number of matching terms in
Line 10. Phrase queries can be performed by arithmetic over
term positions and enforcing distance constraints.

4. EXPERIMENTS
The main point of this paper is that relational database

technology – in particular, columnar storage – is suitable
for rapid prototyping for IR. So far, we have shown how a
retrieval model can be implemented without writing any im-
perative code. In further support of this claim, we present ex-
perimental results demonstrating that our approach achieves
effectiveness and efficiency on par with custom-built retrieval
engines. We compare two different relational backends to
three open-source IR engines: the open-source columnar
database MonetDB [9] (v11.17.13), the commercial database
VectorWise [16] (v3.0.1); and Lucene (v4.3), Indri [14] (v5.5),
and Terrier [12] (v3.5). Comparing MonetDB and Vector-
Wise, the latter combines columnar storage with lightweight
compression and a pipelining execution model, which makes
it the current top performer on the well-known TPC-H bench-
mark for OLAP databases, and especially suited for very
large workloads.

Our experiments used the first segment on the first disk of
ClueWeb12 (∼45 million documents) with queries 201–250
from the TREC 2013 web track. This setup is realistic, since
production search engines usually adopt a partitioned archi-
tecture (and we focus on a single partition). The qrels from
the TREC topics were filtered to only include documents
that are contained in the segment we used. To ensure that
all the IR engines work on the same text, we used Hadoop to

System MAP P5
Indri 0.246 0.304
MonetDB/VectorWise 0.225 0.276
Lucene 0.216 0.265
Terrier 0.215 0.272

Table 1: MAP and P5 effectiveness scores.

pre-process the documents in the same manner as in the rela-
tional setup: this was accomplished by dumping the processed
collection as plain text, turning off stemming/stopword re-
moval in the IR engine, and tokenizing by whitespace. In
all cases we retrieved the top 1000 results. All experiments
were run on a Linux desktop computer (Fedora 20, Kernel
3.12.10, 64 Bit) with 8 cores (Intel Core i7-2600K, 3.4 GHz)
and 16 GB of main memory.

Effectiveness results are shown in Table 1. MonetDB and
VectorWise produce exactly the same rankings and scores,
which is of course to be expected, given that both execute
the same SQL queries. However, the effectiveness differences
between Indri and Terrier do come as a surprise, since both
systems implement BM25—these differences cannot be at-
tributed to tokenization and stopword differences, given the
unified document processing step described above.

From these results we draw two conclusions: First, our
architecture yields effectiveness that is at least on par with
existing custom-built IR engines. Second, these results high-
light the advantage of SQL in providing concise yet precise
semantics. While we do not claim to have the “correct” BM25
implementation, at the very least our model is concisely spec-
ified in a few lines (the SQL query) and thus easy to inspect,
not buried in code. Furthermore, different backends produce
exactly the same results.

In terms of efficiency, we measured query latency. For
each system, queries were run sequentially in isolation. As
mentioned previously, pre-calculating the term frequency for
conjunctive queries is an obvious optimization in the rela-
tional representation, and halves the size of the terms table.
In our experiments we examined this optimization indepen-
dently (“Precalc” vs. “Full”). As an additional optimization,
we have placed the MonetDB database on a compressed file
system (BTRFS with zlib compression, marked as “C”), since
MonetDB does not natively compress data. This reduced the
disk footprint of the MonetDB database to 1/3 of the original
size. In addition, we consulted with the developers of the
Terrier system after observing pathologically slow response
times. They made two suggestions: 1) changing the index
storage model from on-disk to in-memory, which effectively
leads to parts of the index being copied into memory on
startup, and 2) changing the retrieval model from term-at-a-
time (TAAT) to document-at-a-time (DAAT). We did not
include the first optimization here, as it makes the cold cache
runs pointless (see below). However, the second optimization
led to greatly improved performance. For fairness, we report
on both the original configuration for Terrier (Orig) as well
as on the optimized configuration (DAAT).

Figure 3 shows the query latency distribution across topics
as box plots; the boxes contain the observations between
the 25th and 75th percentiles. In addition, the plots are
annotated with the median query latency. Since the indexes
are stored on a hard disk, we expect disk I/O to have a
large impact on performance. To test this, we ran the query
set two times in succession. Before the first run, we asked
the operating system to empty all caches and restarted the
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Figure 3: Query latencies for TREC 2013 web queries on the first segment of ClueWeb12.

system under test. The two runs are presented in separate
plots, the first (“cold” caches) in (a) and the second in (b).

Considering cold runs, we see that Indri was the fastest
system, taking a median of 0.56 seconds to complete a query.
Second and third were VectorWise, with the precaclulated
term frequencies clearly faster, followed by Lucene with a
comparable time. MonetDB on a compressed file system
and Terrier are comparable. The uncompressed MonetDB
experiments clearly show the necessity of compressing an
IR index. The vastly greater index size increased the cold
response times substantially.

For the hot runs, Lucene leads the field by a large margin,
which we suspect to be due to result caching. For Terrier, we
see vastly improved timings for the DAAT setting when parts
of the index are available in memory and do not have to be
loaded from disk. We see that MonetDB (uncompressed) is
able to take advantage of caching by the operating system,
improving performance by about an order of magnitude
compared to the cold runs.

Summarizing these results, it is clear that our database
architecture achieves query latencies that are at least on par
with existing custom-built IR engines.

5. CONCLUDING REMARKS
This paper argues for the use of column stores for proto-

typing IR systems. The well-defined relational model allows
for the precise expression of retrieval models independent of
system implementations. Furthermore, clear abstraction via
the declarative SQL interface allows the backend database
engine to be swapped, allowing IR systems to quickly bene-
fit from advances in the database field. We have described
how to express a standard ranking function using an SQL
query and experiments show that using a column store yields
effectiveness and efficiency that are at least on par with
custom-built IR engines. Hopefully, this will inspire addi-
tional IR researchers to think about using columnar databases
for building future systems, as doing so would let us focus
on the questions on how to best satisfy information needs.
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