- Installation
- Guides
- Overview
- Data Import & Export
- CSV Import
- CSV Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- JSON Import
- JSON Export
- Excel Import
- Excel Export
- SQLite Import
- PostgreSQL Import
- Meta Queries
- ODBC
- Python
- Installation
- Execution SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Features
- SQL Editors
- Data Viewers
- Documentation
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Go
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Result Conversion
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ALTER TABLE
- ALTER VIEW
- ATTACH/DETACH
- CALL
- CHECKPOINT
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DROP
- EXPORT/IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET/RESET
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Utility Functions
- Aggregate Functions
- Configuration
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Pragmas
- Rules for Case Sensitivity
- Samples
- Window Functions
- Extensions
- Development
- DuckDB Repositories
- Testing
- Internals Overview
- Storage Versions & Format
- Execution Format
- Profiling
- Release Dates
- Building
- Benchmark Suite
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
The CHECKPOINT
statement synchronizes data in the write-ahead log (WAL) to the database data file. For in-memory
databases this statement will succeed with no effect.
Examples
-- Synchronize data in the default database
CHECKPOINT;
-- Synchronize data in the specified database
CHECKPOINT file_db;
-- Abort any in-progress transactions to synchronize the data
FORCE CHECKPOINT;
Syntax
Checkpoint operations happen automatically based on the WAL size (see Configuration). This statement is for manual checkpoint actions.
Behavior
The default CHECKPOINT
command will fail if there are any running transactions. Including FORCE
will abort any
transactions and execute the checkpoint operation.
Also see the related PRAGMA
option for further behavior modification.
Search Shortcut cmd + k | ctrl + k