- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java
- Julia
- Node.js (Neo)
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- LOAD / INSTALL
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browse Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- Embedding DuckDB
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
In SQL, constraints can be specified for tables. Constraints enforce certain properties over data that is inserted into a table. Constraints can be specified along with the schema of the table as part of the CREATE TABLE
statement. In certain cases, constraints can also be added to a table using the ALTER TABLE
statement, but this is not currently supported for all constraints.
Warning Constraints have a strong impact on performance: they slow down loading and updates but speed up certain queries. Please consult the Performance Guide for details.
Syntax
Check Constraint
Check constraints allow you to specify an arbitrary Boolean expression. Any columns that do not satisfy this expression violate the constraint. For example, we could enforce that the name
column does not contain spaces using the following CHECK
constraint.
CREATE TABLE students (name VARCHAR CHECK (NOT contains(name, ' ')));
INSERT INTO students VALUES ('this name contains spaces');
Constraint Error: CHECK constraint failed: students
Not Null Constraint
A not-null constraint specifies that the column cannot contain any NULL
values. By default, all columns in tables are nullable. Adding NOT NULL
to a column definition enforces that a column cannot contain NULL
values.
CREATE TABLE students (name VARCHAR NOT NULL);
INSERT INTO students VALUES (NULL);
Constraint Error: NOT NULL constraint failed: students.name
Primary Key and Unique Constraint
Primary key or unique constraints define a column, or set of columns, that are a unique identifier for a row in the table. The constraint enforces that the specified columns are unique within a table, i.e., that at most one row contains the given values for the set of columns.
CREATE TABLE students (id INTEGER PRIMARY KEY, name VARCHAR);
INSERT INTO students VALUES (1, 'Student 1');
INSERT INTO students VALUES (1, 'Student 2');
Constraint Error: Duplicate key "id: 1" violates primary key constraint
CREATE TABLE students (id INTEGER, name VARCHAR, PRIMARY KEY (id, name));
INSERT INTO students VALUES (1, 'Student 1');
INSERT INTO students VALUES (1, 'Student 2');
INSERT INTO students VALUES (1, 'Student 1');
Constraint Error: Duplicate key "id: 1, name: Student 1" violates primary key constraint
In order to enforce this property efficiently, an ART index is automatically created for every primary key or unique constraint that is defined in the table.
Primary key constraints and unique constraints are identical except for two points:
- A table can only have one primary key constraint defined, but many unique constraints
- A primary key constraint also enforces the keys to not be
NULL
.
CREATE TABLE students(id INTEGER PRIMARY KEY, name VARCHAR, email VARCHAR UNIQUE);
INSERT INTO students VALUES (1, 'Student 1', '[email protected]');
INSERT INTO students values (2, 'Student 2', '[email protected]');
Constraint Error: Duplicate key "email: [email protected]" violates unique constraint.
INSERT INTO students(id, name) VALUES (3, 'Student 3');
INSERT INTO students(name, email) VALUES ('Student 3', '[email protected]');
Constraint Error: NOT NULL constraint failed: students.id
Warning Indexes have certain limitations that might result in constraints being evaluated too eagerly, leading to constraint errors such as
violates primary key constraint
andviolates unique constraint
. See the indexes section for more details.
Foreign Keys
Foreign keys define a column, or set of columns, that refer to a primary key or unique constraint from another table. The constraint enforces that the key exists in the other table.
CREATE TABLE students (id INTEGER PRIMARY KEY, name VARCHAR);
CREATE TABLE subjects (id INTEGER PRIMARY KEY, name VARCHAR);
CREATE TABLE exams (
exam_id INTEGER PRIMARY KEY,
subject_id INTEGER REFERENCES subjects(id),
student_id INTEGER REFERENCES students(id),
grade INTEGER
);
INSERT INTO students VALUES (1, 'Student 1');
INSERT INTO subjects VALUES (1, 'CS 101');
INSERT INTO exams VALUES (1, 1, 1, 10);
INSERT INTO exams VALUES (2, 1, 2, 10);
Constraint Error: Violates foreign key constraint because key "id: 2" does not exist in the referenced table
In order to enforce this property efficiently, an ART index is automatically created for every foreign key constraint that is defined in the table.
Warning Indexes have certain limitations that might result in constraints being evaluated too eagerly, leading to constraint errors such as
violates primary key constraint
andviolates unique constraint
. See the indexes section for more details.