- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java
- Julia
- Node.js (Neo)
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- Embedding DuckDB
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
The SUMMARIZE
command can be used to easily compute a number of aggregates over a table or a query.
The SUMMARIZE
command launches a query that computes a number of aggregates over all columns (min
, max
, approx_unique
, avg
, std
, q25
, q50
, q75
, count
), and return these along the column name, column type, and the percentage of NULL
values in the column.
Usage
In order to summarize the contents of a table, use SUMMARIZE
followed by the table name.
SUMMARIZE tbl;
In order to summarize a query, prepend SUMMARIZE
to a query.
SUMMARIZE SELECT * FROM tbl;
Example
Below is an example of SUMMARIZE
on the lineitem
table of TPC-H SF1
table, generated using the tpch
extension.
INSTALL tpch;
LOAD tpch;
CALL dbgen(sf = 1);
SUMMARIZE lineitem;
column_name | column_type | min | max | approx_unique | avg | std | q25 | q50 | q75 | count | null_percentage |
---|---|---|---|---|---|---|---|---|---|---|---|
l_orderkey | INTEGER | 1 | 6000000 | 1508227 | 3000279.604204982 | 1732187.8734803519 | 1509447 | 2989869 | 4485232 | 6001215 | 0.0% |
l_partkey | INTEGER | 1 | 200000 | 202598 | 100017.98932999402 | 57735.69082650496 | 49913 | 99992 | 150039 | 6001215 | 0.0% |
l_suppkey | INTEGER | 1 | 10000 | 10061 | 5000.602606138924 | 2886.9619987306114 | 2501 | 4999 | 7500 | 6001215 | 0.0% |
l_linenumber | INTEGER | 1 | 7 | 7 | 3.0005757167506912 | 1.7324314036519328 | 2 | 3 | 4 | 6001215 | 0.0% |
l_quantity | DECIMAL(15,2) | 1.00 | 50.00 | 50 | 25.507967136654827 | 14.426262537016918 | 13 | 26 | 38 | 6001215 | 0.0% |
l_extendedprice | DECIMAL(15,2) | 901.00 | 104949.50 | 923139 | 38255.138484656854 | 23300.43871096221 | 18756 | 36724 | 55159 | 6001215 | 0.0% |
l_discount | DECIMAL(15,2) | 0.00 | 0.10 | 11 | 0.04999943011540163 | 0.03161985510812596 | 0 | 0 | 0 | 6001215 | 0.0% |
l_tax | DECIMAL(15,2) | 0.00 | 0.08 | 9 | 0.04001350893110812 | 0.025816551798842728 | 0 | 0 | 0 | 6001215 | 0.0% |
l_returnflag | VARCHAR | A | R | 3 | NULL | NULL | NULL | NULL | NULL | 6001215 | 0.0% |
l_linestatus | VARCHAR | F | O | 2 | NULL | NULL | NULL | NULL | NULL | 6001215 | 0.0% |
l_shipdate | DATE | 1992-01-02 | 1998-12-01 | 2516 | NULL | NULL | NULL | NULL | NULL | 6001215 | 0.0% |
l_commitdate | DATE | 1992-01-31 | 1998-10-31 | 2460 | NULL | NULL | NULL | NULL | NULL | 6001215 | 0.0% |
l_receiptdate | DATE | 1992-01-04 | 1998-12-31 | 2549 | NULL | NULL | NULL | NULL | NULL | 6001215 | 0.0% |
l_shipinstruct | VARCHAR | COLLECT COD | TAKE BACK RETURN | 4 | NULL | NULL | NULL | NULL | NULL | 6001215 | 0.0% |
l_shipmode | VARCHAR | AIR | TRUCK | 7 | NULL | NULL | NULL | NULL | NULL | 6001215 | 0.0% |
l_comment | VARCHAR | Tiresias | zzle? furiously iro | 3558599 | NULL | NULL | NULL | NULL | NULL | 6001215 | 0.0% |
Using SUMMARIZE
in a Subquery
SUMMARIZE
can be used a subquery. This allows creating a table from the summary, for example:
CREATE TABLE tbl_summary AS SELECT * FROM (SUMMARIZE tbl);
Summarizing Remote Tables
It is possible to summarize remote tables via the httpfs
extension using the SUMMARIZE TABLE
statement. For example:
SUMMARIZE TABLE 'https://blobs.duckdb.org/data/Star_Trek-Season_1.csv';