- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- LOAD / INSTALL
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browse Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- Embedding DuckDB
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
DuckDB allows directly reading files via the read_text
and read_blob
functions.
These functions accept a filename, a list of filenames or a glob pattern, and output the content of each file as a VARCHAR
or BLOB
, respectively, as well as additional metadata such as the file size and last modified time.
read_text
The read_text
table function reads from the selected source(s) to a VARCHAR
. Each file results in a single row with the content
field holding the entire content of the respective file.
SELECT size, parse_path(filename), content
FROM read_text('test/sql/table_function/files/*.txt');
size | parse_path(filename) | content |
---|---|---|
12 | [test, sql, table_function, files, one.txt] | Hello World! |
2 | [test, sql, table_function, files, three.txt] | 42 |
10 | [test, sql, table_function, files, two.txt] | Foo Bar\nFöö Bär |
The file content is first validated to be valid UTF-8. If read_text
attempts to read a file with invalid UTF-8, an error is thrown suggesting to use read_blob
instead.
read_blob
The read_blob
table function reads from the selected source(s) to a BLOB
:
SELECT size, content, filename
FROM read_blob('test/sql/table_function/files/*');
size | content | filename |
---|---|---|
178 | PK\x03\x04\x0A\x00\x00\x00\x00\x00\xACi=X\x14t\xCE\xC7\x0A… | test/sql/table_function/files/four.blob |
12 | Hello World! | test/sql/table_function/files/one.txt |
2 | 42 | test/sql/table_function/files/three.txt |
10 | F\xC3\xB6\xC3\xB6 B\xC3\xA4r | test/sql/table_function/files/two.txt |
Schema
The schemas of the tables returned by read_text
and read_blob
are identical:
DESCRIBE FROM read_text('README.md');
column_name | column_type | null | key | default | extra |
---|---|---|---|---|---|
filename | VARCHAR | YES | NULL | NULL | NULL |
content | VARCHAR | YES | NULL | NULL | NULL |
size | BIGINT | YES | NULL | NULL | NULL |
last_modified | TIMESTAMP | YES | NULL | NULL | NULL |
Handling Missing Metadata
In cases where the underlying filesystem is unable to provide some of this data due (e.g., because HTTPFS can't always return a valid timestamp), the cell is set to NULL
instead.
Support for Projection Pushdown
The table functions also utilize projection pushdown to avoid computing properties unnecessarily. So you could e.g., use this to glob a directory full of huge files to get the file size in the size column, as long as you omit the content column the data won't be read into DuckDB.