- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java
- Julia
- Node.js (Neo)
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- Embedding DuckDB
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Prior to version 0.10.0, DuckDB did not have a Secrets manager. Hence, the configuration of and authentication to S3 endpoints was handled via variables. This page documents the legacy authentication scheme for the S3 API.
The recommended way to configuration and authentication of S3 endpoints is to use secrets.
Legacy Authentication Scheme
To be able to read or write from S3, the correct region should be set:
SET s3_region = 'us-east-1';
Optionally, the endpoint can be configured in case a non-AWS object storage server is used:
SET s3_endpoint = '⟨domain⟩.⟨tld⟩:⟨port⟩';
If the endpoint is not SSL-enabled then run:
SET s3_use_ssl = false;
Switching between path-style and vhost-style URLs is possible using:
SET s3_url_style = 'path';
However, note that this may also require updating the endpoint. For example for AWS S3 it is required to change the endpoint to s3.⟨region⟩.amazonaws.com
.
After configuring the correct endpoint and region, public files can be read. To also read private files, authentication credentials can be added:
SET s3_access_key_id = '⟨AWS access key id⟩';
SET s3_secret_access_key = '⟨AWS secret access key⟩';
Alternatively, temporary S3 credentials are also supported. They require setting an additional session token:
SET s3_session_token = '⟨AWS session token⟩';
The aws
extension allows for loading AWS credentials.
Per-Request Configuration
Aside from the global S3 configuration described above, specific configuration values can be used on a per-request basis. This allows for use of multiple sets of credentials, regions, etc. These are used by including them on the S3 URI as query parameters. All the individual configuration values listed above can be set as query parameters. For instance:
SELECT *
FROM 's3://bucket/file.parquet?s3_access_key_id=accessKey&s3_secret_access_key=secretKey';
Multiple configurations per query are also allowed:
SELECT *
FROM 's3://bucket/file.parquet?s3_access_key_id=accessKey1&s3_secret_access_key=secretKey1' t1
INNER JOIN 's3://bucket/file.csv?s3_access_key_id=accessKey2&s3_secret_access_key=secretKey2' t2;
Configuration
Some additional configuration options exist for the S3 upload, though the default values should suffice for most use cases.
Additionally, most of the configuration options can be set via environment variables:
DuckDB setting | Environment variable | Note |
---|---|---|
s3_region |
AWS_REGION |
Takes priority over AWS_DEFAULT_REGION |
s3_region |
AWS_DEFAULT_REGION |
|
s3_access_key_id |
AWS_ACCESS_KEY_ID |
|
s3_secret_access_key |
AWS_SECRET_ACCESS_KEY |
|
s3_session_token |
AWS_SESSION_TOKEN |
|
s3_endpoint |
DUCKDB_S3_ENDPOINT |
|
s3_use_ssl |
DUCKDB_S3_USE_SSL |