- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- LOAD / INSTALL
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browse Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- Embedding DuckDB
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
The delta
extension adds support for the Delta Lake open-source storage format. It is built using the Delta Kernel. The extension offers read support for Delta tables, both local and remote.
For implementation details, see the announcement blog post.
Warning The
delta
extension is currently experimental and is only supported on given platforms.
Installing and Loading
The delta
extension will be transparently autoloaded on first use from the official extension repository.
If you would like to install and load it manually, run:
INSTALL delta;
LOAD delta;
Usage
To scan a local Delta table, run:
SELECT *
FROM delta_scan('file:///some/path/on/local/machine');
Reading from an S3 Bucket
To scan a Delta table in an S3 bucket, run:
SELECT *
FROM delta_scan('s3://some/delta/table');
For authenticating to S3 buckets, DuckDB Secrets are supported:
CREATE SECRET (
TYPE S3,
PROVIDER CREDENTIAL_CHAIN
);
SELECT *
FROM delta_scan('s3://some/delta/table/with/auth');
To scan public buckets on S3, you may need to pass the correct region by creating a secret containing the region of your public S3 bucket:
CREATE SECRET (
TYPE S3,
REGION 'my-region'
);
SELECT *
FROM delta_scan('s3://some/public/table/in/my-region');
Reading from Azure Blob Storage
To scan a Delta table in an Azure Blob Storage bucket, run:
SELECT *
FROM delta_scan('az://my-container/my-table');
For authenticating to Azure Blob Storage, DuckDB Secrets are supported:
CREATE SECRET (
TYPE AZURE,
PROVIDER CREDENTIAL_CHAIN
);
SELECT *
FROM delta_scan('az://my-container/my-table-with-auth');
Features
While the delta
extension is still experimental, many (scanning) features and optimizations are already supported:
- multithreaded scans and Parquet metadata reading
- data skipping/filter pushdown
- skipping row-groups in file (based on Parquet metadata)
- skipping complete files (based on Delta partition information)
- projection pushdown
- scanning tables with deletion vectors
- all primitive types
- structs
- S3 support with secrets
More optimizations are going to be released in the future.
Supported DuckDB Versions and Platforms
The delta
extension requires DuckDB version 0.10.3 or newer.
The delta
extension currently only supports the following platforms:
- Linux AMD64 (x86_64 and ARM64):
linux_amd64
,linux_amd64_gcc4
, andlinux_arm64
- macOS Intel and Apple Silicon:
osx_amd64
andosx_arm64
- Windows AMD64:
windows_amd64
Support for the other DuckDB platforms is work-in-progress.