- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java
- Julia
- Node.js (Neo)
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- Embedding DuckDB
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Examples
Read data from a Hive partitioned data set:
SELECT *
FROM read_parquet('orders/*/*/*.parquet', hive_partitioning = true);
Write a table to a Hive partitioned data set:
COPY orders
TO 'orders' (FORMAT PARQUET, PARTITION_BY (year, month));
Note that the PARTITION_BY
options cannot use expressions. You can produce columns on the fly using the following syntax:
COPY (SELECT *, year(timestamp) AS year, month(timestamp) AS month FROM services)
TO 'test' (PARTITION_BY (year, month));
When reading, the partition columns are read from the directory structure and
can be included or excluded depending on the hive_partitioning
parameter.
FROM read_parquet('test/*/*/*.parquet', hive_partitioning = true); -- will include year, month partition columns
FROM read_parquet('test/*/*/*.parquet', hive_partitioning = false); -- will not include year, month columns
Hive Partitioning
Hive partitioning is a partitioning strategy that is used to split a table into multiple files based on partition keys. The files are organized into folders. Within each folder, the partition key has a value that is determined by the name of the folder.
Below is an example of a Hive partitioned file hierarchy. The files are partitioned on two keys (year
and month
).
orders
├── year=2021
│ ├── month=1
│ │ ├── file1.parquet
│ │ └── file2.parquet
│ └── month=2
│ └── file3.parquet
└── year=2022
├── month=11
│ ├── file4.parquet
│ └── file5.parquet
└── month=12
└── file6.parquet
Files stored in this hierarchy can be read using the hive_partitioning
flag.
SELECT *
FROM read_parquet('orders/*/*/*.parquet', hive_partitioning = true);
When we specify the hive_partitioning
flag, the values of the columns will be read from the directories.
Filter Pushdown
Filters on the partition keys are automatically pushed down into the files. This way the system skips reading files that are not necessary to answer a query. For example, consider the following query on the above dataset:
SELECT *
FROM read_parquet('orders/*/*/*.parquet', hive_partitioning = true)
WHERE year = 2022
AND month = 11;
When executing this query, only the following files will be read:
orders
└── year=2022
└── month=11
├── file4.parquet
└── file5.parquet
Autodetection
By default the system tries to infer if the provided files are in a hive partitioned hierarchy. And if so, the hive_partitioning
flag is enabled automatically. The autodetection will look at the names of the folders and search for a 'key' = 'value'
pattern. This behavior can be overridden by using the hive_partitioning
configuration option:
SET hive_partitioning = false;
Hive Types
hive_types
is a way to specify the logical types of the hive partitions in a struct:
SELECT *
FROM read_parquet(
'dir/**/*.parquet',
hive_partitioning = true,
hive_types = {'release': DATE, 'orders': BIGINT}
);
hive_types
will be autodetected for the following types: DATE
, TIMESTAMP
and BIGINT
. To switch off the autodetection, the flag hive_types_autocast = 0
can be set.
Writing Partitioned Files
See the Partitioned Writes section.