- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java
- Julia
- Node.js (Neo)
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- LOAD / INSTALL
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browse Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- Embedding DuckDB
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Parquet Metadata
The parquet_metadata
function can be used to query the metadata contained within a Parquet file, which reveals various internal details of the Parquet file such as the statistics of the different columns. This can be useful for figuring out what kind of skipping is possible in Parquet files, or even to obtain a quick overview of what the different columns contain:
SELECT *
FROM parquet_metadata('test.parquet');
Below is a table of the columns returned by parquet_metadata
.
Field | Type |
---|---|
file_name | VARCHAR |
row_group_id | BIGINT |
row_group_num_rows | BIGINT |
row_group_num_columns | BIGINT |
row_group_bytes | BIGINT |
column_id | BIGINT |
file_offset | BIGINT |
num_values | BIGINT |
path_in_schema | VARCHAR |
type | VARCHAR |
stats_min | VARCHAR |
stats_max | VARCHAR |
stats_null_count | BIGINT |
stats_distinct_count | BIGINT |
stats_min_value | VARCHAR |
stats_max_value | VARCHAR |
compression | VARCHAR |
encodings | VARCHAR |
index_page_offset | BIGINT |
dictionary_page_offset | BIGINT |
data_page_offset | BIGINT |
total_compressed_size | BIGINT |
total_uncompressed_size | BIGINT |
key_value_metadata | MAP(BLOB, BLOB) |
Parquet Schema
The parquet_schema
function can be used to query the internal schema contained within a Parquet file. Note that this is the schema as it is contained within the metadata of the Parquet file. If you want to figure out the column names and types contained within a Parquet file it is easier to use DESCRIBE
.
Fetch the column names and column types:
DESCRIBE SELECT * FROM 'test.parquet';
Fetch the internal schema of a Parquet file:
SELECT *
FROM parquet_schema('test.parquet');
Below is a table of the columns returned by parquet_schema
.
Field | Type |
---|---|
file_name | VARCHAR |
name | VARCHAR |
type | VARCHAR |
type_length | VARCHAR |
repetition_type | VARCHAR |
num_children | BIGINT |
converted_type | VARCHAR |
scale | BIGINT |
precision | BIGINT |
field_id | BIGINT |
logical_type | VARCHAR |
Parquet File Metadata
The parquet_file_metadata
function can be used to query file-level metadata such as the format version and the encryption algorithm used:
SELECT *
FROM parquet_file_metadata('test.parquet');
Below is a table of the columns returned by parquet_file_metadata
.
Field | Type |
---|---|
file_name | VARCHAR |
created_by | VARCHAR |
num_rows | BIGINT |
num_row_groups | BIGINT |
format_version | BIGINT |
encryption_algorithm | VARCHAR |
footer_signing_key_metadata | VARCHAR |
Parquet Key-Value Metadata
The parquet_kv_metadata
function can be used to query custom metadata defined as key-value pairs:
SELECT *
FROM parquet_kv_metadata('test.parquet');
Below is a table of the columns returned by parquet_kv_metadata
.
Field | Type |
---|---|
file_name | VARCHAR |
key | BLOB |
value | BLOB |