- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- LOAD / INSTALL
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browse Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- Embedding DuckDB
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
The json
extension also provides functions to serialize and deserialize SELECT
statements between SQL and JSON, as well as executing JSON serialized statements.
Function | Type | Description |
---|---|---|
json_deserialize_sql(json) |
Scalar | Deserialize one or many json serialized statements back to an equivalent SQL string. |
json_execute_serialized_sql(varchar) |
Table | Execute json serialized statements and return the resulting rows. Only one statement at a time is supported for now. |
json_serialize_sql(varchar, skip_empty := boolean, skip_null := boolean, format := boolean) |
Scalar | Serialize a set of semicolon-separated (; ) select statements to an equivalent list of json serialized statements. |
PRAGMA json_execute_serialized_sql(varchar) |
Pragma | Pragma version of the json_execute_serialized_sql function. |
The json_serialize_sql(varchar)
function takes three optional parameters, skip_empty
, skip_null
, and format
that can be used to control the output of the serialized statements.
If you run the json_execute_serialize_sql(varchar)
table function inside of a transaction the serialized statements will not be able to see any transaction local changes. This is because the statements are executed in a separate query context. You can use the PRAGMA json_execute_serialize_sql(varchar)
pragma version to execute the statements in the same query context as the pragma, although with the limitation that the serialized JSON must be provided as a constant string, i.e., you cannot do PRAGMA json_execute_serialize_sql(json_serialize_sql(...))
.
Note that these functions do not preserve syntactic sugar such as FROM * SELECT ...
, so a statement round-tripped through json_deserialize_sql(json_serialize_sql(...))
may not be identical to the original statement, but should always be semantically equivalent and produce the same output.
Examples
Simple example:
SELECT json_serialize_sql('SELECT 2');
'{"error":false,"statements":[{"node":{"type":"SELECT_NODE","modifiers":[],"cte_map":{"map":[]},"select_list":[{"class":"CONSTANT","type":"VALUE_CONSTANT","alias":"","value":{"type":{"id":"INTEGER","type_info":null},"is_null":false,"value":2}}],"from_table":{"type":"EMPTY","alias":"","sample":null},"where_clause":null,"group_expressions":[],"group_sets":[],"aggregate_handling":"STANDARD_HANDLING","having":null,"sample":null,"qualify":null}}]}'
Example with multiple statements and skip options:
SELECT json_serialize_sql('SELECT 1 + 2; SELECT a + b FROM tbl1', skip_empty := true, skip_null := true);
'{"error":false,"statements":[{"node":{"type":"SELECT_NODE","select_list":[{"class":"FUNCTION","type":"FUNCTION","function_name":"+","children":[{"class":"CONSTANT","type":"VALUE_CONSTANT","value":{"type":{"id":"INTEGER"},"is_null":false,"value":1}},{"class":"CONSTANT","type":"VALUE_CONSTANT","value":{"type":{"id":"INTEGER"},"is_null":false,"value":2}}],"order_bys":{"type":"ORDER_MODIFIER"},"distinct":false,"is_operator":true,"export_state":false}],"from_table":{"type":"EMPTY"},"aggregate_handling":"STANDARD_HANDLING"}},{"node":{"type":"SELECT_NODE","select_list":[{"class":"FUNCTION","type":"FUNCTION","function_name":"+","children":[{"class":"COLUMN_REF","type":"COLUMN_REF","column_names":["a"]},{"class":"COLUMN_REF","type":"COLUMN_REF","column_names":["b"]}],"order_bys":{"type":"ORDER_MODIFIER"},"distinct":false,"is_operator":true,"export_state":false}],"from_table":{"type":"BASE_TABLE","table_name":"tbl1"},"aggregate_handling":"STANDARD_HANDLING"}}]}'
Example with a syntax error:
SELECT json_serialize_sql('TOTALLY NOT VALID SQL');
'{"error":true,"error_type":"parser","error_message":"syntax error at or near \"TOTALLY\"\nLINE 1: TOTALLY NOT VALID SQL\n ^"}'
Example with deserialize:
SELECT json_deserialize_sql(json_serialize_sql('SELECT 1 + 2'));
'SELECT (1 + 2)'
Example with deserialize and syntax sugar:
SELECT json_deserialize_sql(json_serialize_sql('FROM x SELECT 1 + 2'));
'SELECT (1 + 2) FROM x'
Example with execute:
SELECT * FROM json_execute_serialized_sql(json_serialize_sql('SELECT 1 + 2'));
3
Example with error:
SELECT * FROM json_execute_serialized_sql(json_serialize_sql('TOTALLY NOT VALID SQL'));
Error: Parser Error: Error parsing json: parser: syntax error at or near "TOTALLY"