- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java
- Julia
- Node.js (Neo)
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- Embedding DuckDB
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
The JSON extension can attempt to determine the format of a JSON file when setting format
to auto
.
Here are some example JSON files and the corresponding format
settings that should be used.
In each of the below cases, the format
setting was not needed, as DuckDB was able to infer it correctly, but it is included for illustrative purposes.
A query of this shape would work in each case:
SELECT *
FROM filename.json;
Format: newline_delimited
With format = 'newline_delimited'
newline-delimited JSON can be parsed.
Each line is a JSON.
We use the example file records.json
with the following content:
{"key1":"value1", "key2": "value1"}
{"key1":"value2", "key2": "value2"}
{"key1":"value3", "key2": "value3"}
SELECT *
FROM read_json('records.json', format = 'newline_delimited');
key1 | key2 |
---|---|
value1 | value1 |
value2 | value2 |
value3 | value3 |
Format: array
If the JSON file contains a JSON array of objects (pretty-printed or not), array_of_objects
may be used.
To demonstrate its use, we use the example file records-in-array.json
:
[
{"key1":"value1", "key2": "value1"},
{"key1":"value2", "key2": "value2"},
{"key1":"value3", "key2": "value3"}
]
SELECT *
FROM read_json('records-in-array.json', format = 'array');
key1 | key2 |
---|---|
value1 | value1 |
value2 | value2 |
value3 | value3 |
Format: unstructured
If the JSON file contains JSON that is not newline-delimited or an array, unstructured
may be used.
To demonstrate its use, we use the example file unstructured.json
:
{
"key1":"value1",
"key2":"value1"
}
{
"key1":"value2",
"key2":"value2"
}
{
"key1":"value3",
"key2":"value3"
}
SELECT *
FROM read_json('unstructured.json', format = 'unstructured');
key1 | key2 |
---|---|
value1 | value1 |
value2 | value2 |
value3 | value3 |
Records Settings
The JSON extension can attempt to determine whether a JSON file contains records when setting records = auto
.
When records = true
, the JSON extension expects JSON objects, and will unpack the fields of JSON objects into individual columns.
Continuing with the same example file, records.json
:
{"key1":"value1", "key2": "value1"}
{"key1":"value2", "key2": "value2"}
{"key1":"value3", "key2": "value3"}
SELECT *
FROM read_json('records.json', records = true);
key1 | key2 |
---|---|
value1 | value1 |
value2 | value2 |
value3 | value3 |
When records = false
, the JSON extension will not unpack the top-level objects, and create STRUCT
s instead:
SELECT *
FROM read_json('records.json', records = false);
json |
---|
{'key1': value1, 'key2': value1} |
{'key1': value2, 'key2': value2} |
{'key1': value3, 'key2': value3} |
This is especially useful if we have non-object JSON, for example, arrays.json
:
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
SELECT *
FROM read_json('arrays.json', records = false);
json |
---|
[1, 2, 3] |
[4, 5, 6] |
[7, 8, 9] |