- Installation
- Guides
- Overview
- Data Import & Export
- CSV Import
- CSV Export
- Parquet Import
- Parquet Export
- Query Parquet
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- JSON Import
- JSON Export
- Excel Import
- Excel Export
- SQLite Import
- PostgreSQL Import
- Meta Queries
- ODBC
- Python
- Install
- Execute SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- DuckDB with Ibis
- DuckDB with Polars
- DuckDB with Vaex
- DuckDB with DataFusion
- DuckDB with fsspec Filesystems
- SQL Features
- SQL Editors
- Data Viewers
- Documentation
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- Insert Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configure
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Result Conversion
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Scala
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- Alter Table
- Alter View
- Attach/Detach
- Call
- Checkpoint
- Copy
- Create Macro
- Create Schema
- Create Sequence
- Create Table
- Create View
- Create Type
- Delete
- Drop
- Export
- Insert
- Pivot
- Select
- Set/Reset
- Unpivot
- Update
- Use
- Vacuum
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT
- SAMPLE
- UNNEST
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Data Types
- Overview
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Map
- NULL Values
- Numeric
- Struct
- Text
- Timestamp
- Time Zones
- Union
- Expressions
- Functions
- Overview
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Utility Functions
- Aggregates
- Configuration
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Pragmas
- Rules for Case Sensitivity
- Samples
- Window Functions
- Extensions
- Development
- DuckDB Repositories
- Testing
- Internals Overview
- Storage Versions & Format
- Execution Format
- Profiling
- Release Dates
- Building
- Benchmark Suite
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
List Data Type
A LIST
column can have values with different lengths, but they must all have the same underlying type. LIST
s are typically used to store arrays of numbers, but can contain any uniform data type, including other LIST
s and STRUCT
s.
LIST
s are similar to PostgreSQL’s ARRAY
type. DuckDB uses the LIST
terminology, but some array functions are provided for PostgreSQL compatibility.
See the data types overview for a comparison between nested data types.
Lists can be created using the LIST_VALUE(expr, ...)
function or the equivalent bracket notation [expr, ...]
. The expressions can be constants or arbitrary expressions.
Creating Lists
-- List of integers
SELECT [1, 2, 3];
-- List of strings with a NULL value
SELECT ['duck', 'goose', NULL, 'heron'];
-- List of lists with NULL values
SELECT [['duck', 'goose', 'heron'], NULL, ['frog', 'toad'], []];
-- Create a list with the list_value function
SELECT list_value(1, 2, 3);
-- Create a table with an integer list column and a varchar list column
CREATE TABLE list_table (int_list INT[], varchar_list VARCHAR[]);
Retrieving from Lists
Retrieving one or more values from a list can be accomplished using brackets and slicing notation, or through list functions like list_extract
. Multiple equivalent functions are provided as aliases for compatibility with systems that refer to lists as arrays. For example, the function array_slice
.
-- Note that we wrap the list creation in parenthesis so that it happens first.
-- This is only needed in our basic examples here, not when working with a list column
-- For example, this can't be parsed: SELECT ['a', 'b', 'c'][1]
example | result |
---|---|
SELECT (['a', 'b', 'c'])[3] |
‘c’ |
SELECT (['a', 'b', 'c'])[-1] |
‘c’ |
SELECT (['a', 'b', 'c'])[2 + 1] |
‘c’ |
SELECT list_extract(['a', 'b', 'c'], 3) |
‘c’ |
SELECT (['a', 'b', 'c'])[1:2] |
[‘a’, ‘b’] |
SELECT (['a', 'b', 'c'])[:2] |
[‘a’, ‘b’] |
SELECT (['a', 'b', 'c'])[-2:] |
[‘b’, ‘c’] |
SELECT list_slice(['a', 'b', 'c'], 2, 3) |
[‘b’, ‘c’] |
Ordering
The ordering is defined positionally. NULL
values compare greater than all other values and are considered equal to each other.
Null Comparisons
At the top level, NULL
nested values obey standard SQL NULL
comparison rules:
comparing a NULL
nested value to a non-NULL
nested value produces a NULL
result.
Comparing nested value members , however, uses the internal nested value rules for NULL
s,
and a NULL
nested value member will compare above a non-NULL
nested value member.
Functions
See Nested Functions.