- Installation
- Guides
- Data Import & Export
- CSV Import
- CSV Export
- Parquet Import
- Parquet Export
- Query Parquet
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- SQLite Import
- Postgres Import
- Meta Queries
- Python
- Install
- Execute SQL
- Jupyter Notebooks
- SQL on Pandas
- Import From Pandas
- Export To Pandas
- SQL on Arrow
- Import From Arrow
- Export To Arrow
- Relational API on Pandas
- Multiple Python Threads
- DuckDB with Ibis
- DuckDB with Fugue
- DuckDB with Polars
- DuckDB with Vaex
- DuckDB with DataFusion
- DuckDB with fsspec filesystems
- SQL Editors
- Data Viewers
- Documentation
- Connect
- Data Import
- Client APIs
- Overview
- Python
- R
- Java
- Julia
- C
- Overview
- Startup
- Configure
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- Node.js
- Wasm
- ODBC
- CLI
- SQL
- Introduction
- Statements
- Overview
- Select
- Insert
- Delete
- Update
- Create Schema
- Create Table
- Create View
- Create Sequence
- Create Macro
- Drop
- Alter Table
- Copy
- Export
- Attach
- Query Syntax
- SELECT
- FROM
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT
- SAMPLE
- UNNEST
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Data Types
- Overview
- NULL Values
- Boolean
- Enum
- Numeric
- Text
- Date
- Timestamp
- Interval
- Blob
- Bitstring
- List
- Struct
- Map
- Union
- Expressions
- Functions
- Overview
- Enum Functions
- Numeric Functions
- Text Functions
- Pattern Matching
- Date Functions
- Timestamp Functions
- Timestamp With Time Zone Functions
- Time Functions
- Interval Functions
- Date Formats
- Date Parts
- Blob Functions
- Bitstring Functions
- Nested Functions
- Utility Functions
- Indexes
- Aggregates
- Window Functions
- Samples
- Information Schema
- Metadata Functions
- Configuration
- Pragmas
- Extensions
- Development
- Sitemap
- Why DuckDB
- FAQ
- Code of Conduct
- Live Demo
Name | Aliases | Description |
---|---|---|
BOOLEAN |
bool | logical boolean (true/false) |
The BOOLEAN
type represents a statement of truth (“true” or “false”). In SQL, the boolean field can also have a third state “unknown” which is represented by the SQL NULL value.
-- select the three possible values of a boolean column
SELECT TRUE, FALSE, NULL::BOOLEAN;
Boolean values can be explicitly created using the literals TRUE
and FALSE
. However, they are most often created as a result of comparisons or conjunctions. For example, the comparison i > 10
results in a boolean value. Boolean values can be used in the WHERE
and HAVING
clauses of a SQL statement to filter out tuples from the result. In this case, tuples for which the predicate evaluates to TRUE
will pass the filter, and tuples for which the predicate evaluates to FALSE
or NULL
will be filtered out. Consider the following example:
-- create a table with the value (5), (15) and (NULL)
CREATE TABLE integers(i INTEGER);
INSERT INTO integers VALUES (5), (15), (NULL);
-- select all entries where i > 10
SELECT * FROM integers WHERE i > 10;
-- in this case (5) and (NULL) are filtered out:
-- 5 > 10 = FALSE
-- NULL > 10 = NULL
-- The result is (15)
Conjunctions
The AND
/OR
conjunctions can be used to combine boolean values.
Below is a truth table for the AND
conjunction (i.e. x AND y
).
X | X AND TRUE | X AND FALSE | X AND NULL |
---|---|---|---|
TRUE | TRUE | FALSE | NULL |
FALSE | FALSE | FALSE | FALSE |
NULL | NULL | FALSE | NULL |
Below is a truth table for the OR
conjunction (i.e. x OR y
).
X | X OR TRUE | X OR FALSE | X OR NULL |
---|---|---|---|
TRUE | TRUE | TRUE | TRUE |
FALSE | TRUE | FALSE | NULL |
NULL | TRUE | NULL | NULL |
Expressions
See Logical Operators and Comparison Operators.