- Installation
- Guides
- Data Import & Export
- CSV Import
- CSV Export
- Parquet Import
- Parquet Export
- Query Parquet
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- SQLite Import
- Postgres Import
- Meta Queries
- Python
- Install
- Execute SQL
- Jupyter Notebooks
- SQL on Pandas
- Import From Pandas
- Export To Pandas
- SQL on Arrow
- Import From Arrow
- Export To Arrow
- Relational API on Pandas
- Multiple Python Threads
- DuckDB with Ibis
- DuckDB with Fugue
- DuckDB with Polars
- DuckDB with Vaex
- DuckDB with DataFusion
- DuckDB with fsspec filesystems
- SQL Editors
- Data Viewers
- Documentation
- Connect
- Data Import
- Client APIs
- Overview
- Python
- R
- Java
- Julia
- C
- Overview
- Startup
- Configure
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- Node.js
- Wasm
- ODBC
- CLI
- SQL
- Introduction
- Statements
- Overview
- Select
- Insert
- Delete
- Update
- Create Schema
- Create Table
- Create View
- Create Sequence
- Create Macro
- Drop
- Alter Table
- Copy
- Export
- Attach
- Query Syntax
- SELECT
- FROM
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT
- SAMPLE
- UNNEST
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Data Types
- Overview
- NULL Values
- Boolean
- Enum
- Numeric
- Text
- Date
- Timestamp
- Interval
- Blob
- Bitstring
- List
- Struct
- Map
- Union
- Expressions
- Functions
- Overview
- Enum Functions
- Numeric Functions
- Text Functions
- Pattern Matching
- Date Functions
- Timestamp Functions
- Timestamp With Time Zone Functions
- Time Functions
- Interval Functions
- Date Formats
- Date Parts
- Blob Functions
- Bitstring Functions
- Nested Functions
- Utility Functions
- Indexes
- Aggregates
- Window Functions
- Samples
- Information Schema
- Metadata Functions
- Configuration
- Pragmas
- Extensions
- Development
- DuckDB Repositories
- Testing
- Internals Overview
- Storage Versions & Format
- Execution Format
- Profiling
- Release Dates
- Building
- Benchmark Suite
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
DuckDB Node Bindings
This package provides a node.js API for DuckDB, the “SQLite for Analytics”. The API for this client is somewhat compliant to the SQLite node.js client for easier transition.
Load the package and create a database object:
var duckdb = require('duckdb');
var db = new duckdb.Database(':memory:'); // or a file name for a persistent DB
Then you can run a query:
db.all('SELECT 42 AS fortytwo', function(err, res) {
if (err) {
throw err;
}
console.log(res[0].fortytwo)
});
Other available methods are each
, where the callback is invoked for each row, run
to execute a single statement without results and exec
, which can execute several SQL commands at once but also does not return results. All those commands can work with prepared statements, taking the values for the parameters as additional arguments. For example like so:
db.all('SELECT ?::INTEGER AS fortytwo, ?::STRING as hello', 42, 'Hello, World', function(err, res) {
if (err) {
throw err;
}
console.log(res[0].fortytwo)
console.log(res[0].hello)
});
However, these are all shorthands for something much more elegant. A database can have multiple Connection
s, those are created using db.connect()
.
var con = db.connect();
You can create multiple connections, each with their own transaction context.
Connection
objects also contain shorthands to directly call run()
, all()
and each()
with parameters and callbacks, respectively, for example:
con.all('SELECT 42 AS fortytwo', function(err, res) {
if (err) {
throw err;
}
console.log(res[0].fortytwo)
});
From connections, you can create prepared statements (and only that) using con.prepare()
:
var stmt = con.prepare('select ?::INTEGER as fortytwo');
To execute this statement, you can call for example all()
on the stmt
object:
stmt.all(42, function(err, res) {
if (err) {
throw err;
}
console.log(res[0].fortytwo)
});
You can also execute the prepared statement multiple times. This is for example useful to fill a table with data:
con.run('CREATE TABLE a (i INTEGER)');
var stmt = con.prepare('INSERT INTO a VALUES (?)');
for (var i = 0; i < 10; i++) {
stmt.run(i);
}
stmt.finalize();
con.all('SELECT * FROM a', function(err, res) {
if (err) {
throw err;
}
console.log(res)
});
prepare()
can also take a callback which gets the prepared statement as an argument:
var stmt = con.prepare('select ?::INTEGER as fortytwo', function(err, stmt) {
stmt.all(42, function(err, res) {
if (err) {
throw err;
}
console.log(res[0].fortytwo)
});
});