- Installation
- Guides
- Data Import & Export
- CSV Import
- CSV Export
- Parquet Import
- Parquet Export
- Query Parquet
- HTTP Parquet Import
- S3 Parquet Import
- Meta Queries
- Python
- Install
- Execute SQL
- Jupyter Notebooks
- SQL on Pandas
- Import From Pandas
- Export To Pandas
- SQL on Arrow
- Import From Arrow
- Export To Arrow
- Relational API on Pandas
- DuckDB with Ibis
- SQL Editors
- Documentation
- Connect
- Data Import
- Client APIs
- Overview
- Python
- R
- Java
- C
- Overview
- Startup
- Configure
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- Node.js
- Wasm
- ODBC
- CLI
- SQL
- Introduction
- Statements
- Overview
- Select
- Insert
- Delete
- Update
- Create Schema
- Create Table
- Create View
- Create Sequence
- Create Macro
- Drop
- Alter Table
- Copy
- Export
- Query Syntax
- SELECT
- FROM
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT
- SAMPLE
- UNNEST
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Data Types
- Expressions
- Functions
- Overview
- Numeric Functions
- Text Functions
- Pattern Matching
- Date Functions
- Timestamp Functions
- Time Functions
- Interval Functions
- Date Formats
- Date Parts
- Blob Functions
- Nested Functions
- Utility Functions
- Indexes
- Aggregates
- Window Functions
- Samples
- Information Schema
- Configuration
- Pragmas
- Extensions
- Development
- Testing
- Internals Overview
- Storage Versions & Format
- Execution Format
- Profiling
- Release Dates
- Building
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
How to execute SQL on a Pandas DataFrame
Pandas DataFrames stored in local variables can be queried as if they are regular tables within DuckDB.
import duckdb
import pandas
# connect to an in-memory database
con = duckdb.connect()
my_df = pandas.DataFrame.from_dict({'a': [42]})
# query the Pandas DataFrame "my_df"
results = con.execute("SELECT * FROM my_df").df()
Search Shortcut cmd + k | ctrl + k