- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java
- Julia
- Node.js (Neo)
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- Embedding DuckDB
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
DuckDB offers a Swift API. See the announcement post for details.
Instantiating DuckDB
DuckDB supports both in-memory and persistent databases. To work with an in-memory datatabase, run:
let database = try Database(store: .inMemory)
To work with a persistent database, run:
let database = try Database(store: .file(at: "test.db"))
Queries can be issued through a database connection.
let connection = try database.connect()
DuckDB supports multiple connections per database.
Application Example
The rest of the page is based on the example of our announcement post, which uses raw data from NASA's Exoplanet Archive loaded directly into DuckDB.
Creating an Application-Specific Type
We first create an application-specific type that we'll use to house our database and connection and through which we'll eventually define our app-specific queries.
import DuckDB
final class ExoplanetStore {
let database: Database
let connection: Connection
init(database: Database, connection: Connection) {
self.database = database
self.connection = connection
}
}
Loading a CSV File
We load the data from NASA's Exoplanet Archive:
wget https://exoplanetarchive.ipac.caltech.edu/TAP/sync?query=select+pl_name+,+disc_year+from+pscomppars&format=csv -O downloaded_exoplanets.csv
Once we have our CSV downloaded locally, we can use the following SQL command to load it as a new table to DuckDB:
CREATE TABLE exoplanets AS
SELECT * FROM read_csv('downloaded_exoplanets.csv');
Let's package this up as a new asynchronous factory method on our ExoplanetStore
type:
import DuckDB
import Foundation
final class ExoplanetStore {
// Factory method to create and prepare a new ExoplanetStore
static func create() async throws -> ExoplanetStore {
// Create our database and connection as described above
let database = try Database(store: .inMemory)
let connection = try database.connect()
// Download the CSV from the exoplanet archive
let (csvFileURL, _) = try await URLSession.shared.download(
from: URL(string: "https://exoplanetarchive.ipac.caltech.edu/TAP/sync?query=select+pl_name+,+disc_year+from+pscomppars&format=csv")!)
// Issue our first query to DuckDB
try connection.execute("""
CREATE TABLE exoplanets AS
SELECT * FROM read_csv('\(csvFileURL.path)');
""")
// Create our pre-populated ExoplanetStore instance
return ExoplanetStore(
database: database,
connection: connection
)
}
// Let's make the initializer we defined previously
// private. This prevents anyone accidentally instantiating
// the store without having pre-loaded our Exoplanet CSV
// into the database
private init(database: Database, connection: Connection) {
...
}
}
Querying the Database
The following example queires DuckDB from within Swift via an async function. This means the callee won't be blocked while the query is executing. We'll then cast the result columns to Swift native types using DuckDB's ResultSet
cast(to:)
family of methods, before finally wrapping them up in a DataFrame
from the TabularData framework.
...
import TabularData
extension ExoplanetStore {
// Retrieves the number of exoplanets discovered by year
func groupedByDiscoveryYear() async throws -> DataFrame {
// Issue the query we described above
let result = try connection.query("""
SELECT disc_year, count(disc_year) AS Count
FROM exoplanets
GROUP BY disc_year
ORDER BY disc_year
""")
// Cast our DuckDB columns to their native Swift
// equivalent types
let discoveryYearColumn = result[0].cast(to: Int.self)
let countColumn = result[1].cast(to: Int.self)
// Use our DuckDB columns to instantiate TabularData
// columns and populate a TabularData DataFrame
return DataFrame(columns: [
TabularData.Column(discoveryYearColumn).eraseToAnyColumn(),
TabularData.Column(countColumn).eraseToAnyColumn(),
])
}
}
Complete Project
For the complete example project, clone the DuckDB Swift repository and open up the runnable app project located in Examples/SwiftUI/ExoplanetExplorer.xcodeproj
.