- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java
- Julia
- Node.js (Neo)
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- Embedding DuckDB
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
The DuckDBPyType
class represents a type instance of our data types.
Converting from Other Types
To make the API as easy to use as possible, we have added implicit conversions from existing type objects to a DuckDBPyType instance. This means that wherever a DuckDBPyType object is expected, it is also possible to provide any of the options listed below.
Python Built-ins
The table below shows the mapping of Python Built-in types to DuckDB type.
Built-in types | DuckDB type |
---|---|
bool | BOOLEAN |
bytearray | BLOB |
bytes | BLOB |
float | DOUBLE |
int | BIGINT |
str | VARCHAR |
Numpy DTypes
The table below shows the mapping of Numpy DType to DuckDB type.
Type | DuckDB type |
---|---|
bool | BOOLEAN |
float32 | FLOAT |
float64 | DOUBLE |
int16 | SMALLINT |
int32 | INTEGER |
int64 | BIGINT |
int8 | TINYINT |
uint16 | USMALLINT |
uint32 | UINTEGER |
uint64 | UBIGINT |
uint8 | UTINYINT |
Nested Types
list[child_type]
list
type objects map to a LIST
type of the child type.
Which can also be arbitrarily nested.
import duckdb
from typing import Union
duckdb.typing.DuckDBPyType(list[dict[Union[str, int], str]])
MAP(UNION(u1 VARCHAR, u2 BIGINT), VARCHAR)[]
dict[key_type, value_type]
dict
type objects map to a MAP
type of the key type and the value type.
import duckdb
print(duckdb.typing.DuckDBPyType(dict[str, int]))
MAP(VARCHAR, BIGINT)
{'a': field_one, 'b': field_two, .., 'n': field_n}
dict
objects map to a STRUCT
composed of the keys and values of the dict.
import duckdb
print(duckdb.typing.DuckDBPyType({'a': str, 'b': int}))
STRUCT(a VARCHAR, b BIGINT)
Union[⟨type_1⟩, ... ⟨type_n⟩]
typing.Union
objects map to a UNION
type of the provided types.
import duckdb
from typing import Union
print(duckdb.typing.DuckDBPyType(Union[int, str, bool, bytearray]))
UNION(u1 BIGINT, u2 VARCHAR, u3 BOOLEAN, u4 BLOB)
Creation Functions
For the built-in types, you can use the constants defined in duckdb.typing
:
DuckDB type |
---|
BIGINT |
BIT |
BLOB |
BOOLEAN |
DATE |
DOUBLE |
FLOAT |
HUGEINT |
INTEGER |
INTERVAL |
SMALLINT |
SQLNULL |
TIME_TZ |
TIME |
TIMESTAMP_MS |
TIMESTAMP_NS |
TIMESTAMP_S |
TIMESTAMP_TZ |
TIMESTAMP |
TINYINT |
UBIGINT |
UHUGEINT |
UINTEGER |
USMALLINT |
UTINYINT |
UUID |
VARCHAR |
For the complex types there are methods available on the DuckDBPyConnection
object or the duckdb
module.
Anywhere a DuckDBPyType
is accepted, we will also accept one of the type objects that can implicitly convert to a DuckDBPyType
.
list_type
| array_type
Parameters:
child_type: DuckDBPyType
struct_type
| row_type
Parameters:
fields: Union[list[DuckDBPyType], dict[str, DuckDBPyType]]
map_type
Parameters:
key_type: DuckDBPyType
value_type: DuckDBPyType
decimal_type
Parameters:
width: int
scale: int
union_type
Parameters:
members: Union[list[DuckDBPyType], dict[str, DuckDBPyType]]
string_type
Parameters:
collation: Optional[str]