- Installation
- Guides
- Overview
- Data Import & Export
- CSV Import
- CSV Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- JSON Import
- JSON Export
- Excel Import
- Excel Export
- SQLite Import
- PostgreSQL Import
- Meta Queries
- ODBC
- Python
- Installation
- Execution SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Features
- SQL Editors
- Data Viewers
- Documentation
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Go
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Result Conversion
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ALTER TABLE
- ALTER VIEW
- ATTACH/DETACH
- CALL
- CHECKPOINT
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DROP
- EXPORT/IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET/RESET
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Expressions
- Overview
- CASE statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Utility Functions
- Aggregate Functions
- Configuration
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Pragmas
- Rules for Case Sensitivity
- Samples
- Window Functions
- Extensions
- Development
- DuckDB Repositories
- Testing
- Internals Overview
- Storage Versions & Format
- Execution Format
- Profiling
- Release Dates
- Building
- Benchmark Suite
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
The DuckDB Spark API implements the PySpark API, allowing you to use the familiar Spark API to interact with DuckDB. All statements are translated to DuckDB’s internal plans using our relational API and executed using DuckDB’s query engine.
The DuckDB Spark API is currently experimental and features are still missing. We are very interested in feedback. Please report any functionality that you are missing, either through Discord or on GitHub.
Example
from duckdb.experimental.spark.sql import SparkSession as session
from duckdb.experimental.spark.sql.functions import lit, col
import pandas as pd
spark = session.builder.getOrCreate()
pandas_df = pd.DataFrame({
'age': [34, 45, 23, 56],
'name': ['Joan', 'Peter', 'John', 'Bob']
})
df = spark.createDataFrame(pandas_df)
df = df.withColumn(
'location', lit('Seattle')
)
res = df.select(
col('age'),
col('location')
).collect()
print(res)
[
Row(age=34, location='Seattle'),
Row(age=45, location='Seattle'),
Row(age=23, location='Seattle'),
Row(age=56, location='Seattle')
]
Contribution Guidelines
Contributions to the experimental Spark API are welcome. When making a contribution, please follow these guidelines:
- Instead of using temporary files, use our
pytest
testing framework. - When adding new functions, ensure that method signatures comply with those in the PySpark API.
Search Shortcut cmd + k | ctrl + k