- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java
- Julia
- Node.js (Neo)
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- Embedding DuckDB
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
The Expression
class represents an instance of an expression.
Why Would I Use the Expression API?
Using this API makes it possible to dynamically build up expressions, which are typically created by the parser from the query string. This allows you to skip that and have more fine-grained control over the used expressions.
Below is a list of currently supported expressions that can be created through the API.
Column Expression
This expression references a column by name.
import duckdb
import pandas as pd
df = pd.DataFrame({
'a': [1, 2, 3, 4],
'b': [True, None, False, True],
'c': [42, 21, 13, 14]
})
Selecting a single column:
col = duckdb.ColumnExpression('a')
res = duckdb.df(df).select(col).fetchall()
print(res)
[(1,), (2,), (3,), (4,)]
Selecting multiple columns:
col_list = [
duckdb.ColumnExpression('a') * 10,
duckdb.ColumnExpression('b').isnull(),
duckdb.ColumnExpression('c') + 5
]
res = duckdb.df(df).select(*col_list).fetchall()
print(res)
[(10, False, 47), (20, True, 26), (30, False, 18), (40, False, 19)]
Star Expression
This expression selects all columns of the input source.
Optionally it's possible to provide an exclude
list to filter out columns of the table.
This exclude
list can contain either strings or Expressions.
import duckdb
import pandas as pd
df = pd.DataFrame({
'a': [1, 2, 3, 4],
'b': [True, None, False, True],
'c': [42, 21, 13, 14]
})
star = duckdb.StarExpression(exclude = ['b'])
res = duckdb.df(df).select(star).fetchall()
print(res)
[(1, 42), (2, 21), (3, 13), (4, 14)]
Constant Expression
This expression contains a single value.
import duckdb
import pandas as pd
df = pd.DataFrame({
'a': [1, 2, 3, 4],
'b': [True, None, False, True],
'c': [42, 21, 13, 14]
})
const = duckdb.ConstantExpression('hello')
res = duckdb.df(df).select(const).fetchall()
print(res)
[('hello',), ('hello',), ('hello',), ('hello',)]
Case Expression
This expression contains a CASE WHEN (...) THEN (...) ELSE (...) END
expression.
By default ELSE
is NULL
and it can be set using .else(value = ...)
.
Additional WHEN (...) THEN (...)
blocks can be added with .when(condition = ..., value = ...)
.
import duckdb
import pandas as pd
from duckdb import (
ConstantExpression,
ColumnExpression,
CaseExpression
)
df = pd.DataFrame({
'a': [1, 2, 3, 4],
'b': [True, None, False, True],
'c': [42, 21, 13, 14]
})
hello = ConstantExpression('hello')
world = ConstantExpression('world')
case = \
CaseExpression(condition = ColumnExpression('b') == False, value = world) \
.otherwise(hello)
res = duckdb.df(df).select(case).fetchall()
print(res)
[('hello',), ('hello',), ('world',), ('hello',)]
Function Expression
This expression contains a function call. It can be constructed by providing the function name and an arbitrary amount of Expressions as arguments.
import duckdb
import pandas as pd
from duckdb import (
ConstantExpression,
ColumnExpression,
FunctionExpression
)
df = pd.DataFrame({
'a': [
'test',
'pest',
'text',
'rest',
]
})
ends_with = FunctionExpression('ends_with', ColumnExpression('a'), ConstantExpression('est'))
res = duckdb.df(df).select(ends_with).fetchall()
print(res)
[(True,), (True,), (False,), (True,)]
Common Operations
The Expression class also contains many operations that can be applied to any Expression type.
Operation | Description |
---|---|
.alias(name: str) |
Applies an alias to the expression |
.cast(type: DuckDBPyType) |
Applies a cast to the provided type on the expression |
.isin(*exprs: Expression) |
Creates an IN expression against the provided expressions as the list |
.isnotin(*exprs: Expression) |
Creates a NOT IN expression against the provided expressions as the list |
.isnotnull() |
Checks whether the expression is not NULL |
.isnull() |
Checks whether the expression is NULL |
Order Operations
When expressions are provided to DuckDBPyRelation.order()
, the following order operations can be applied.
Operation | Description |
---|---|
.asc() |
Indicates that this expression should be sorted in ascending order |
.desc() |
Indicates that this expression should be sorted in descending order |
.nulls_first() |
Indicates that the nulls in this expression should precede the non-null values |
.nulls_last() |
Indicates that the nulls in this expression should come after the non-null values |