- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java
- Julia
- Node.js (Neo)
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- Embedding DuckDB
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Deprecated The old DuckDB Node.js package is deprecated. Please use the DuckDB Node Neo package instead.
This package provides a Node.js API for DuckDB. The API for this client is somewhat compliant to the SQLite Node.js client for easier transition.
For TypeScript wrappers, see the duckdb-async project.
Initializing
Load the package and create a database object:
const duckdb = require('duckdb');
const db = new duckdb.Database(':memory:'); // or a file name for a persistent DB
All options as described on Database configuration can be (optionally) supplied to the Database
constructor as second argument. The third argument can be optionally supplied to get feedback on the given options.
const db = new duckdb.Database(':memory:', {
"access_mode": "READ_WRITE",
"max_memory": "512MB",
"threads": "4"
}, (err) => {
if (err) {
console.error(err);
}
});
Running a Query
The following code snippet runs a simple query using the Database.all()
method.
db.all('SELECT 42 AS fortytwo', function(err, res) {
if (err) {
console.warn(err);
return;
}
console.log(res[0].fortytwo)
});
Other available methods are each
, where the callback is invoked for each row, run
to execute a single statement without results and exec
, which can execute several SQL commands at once but also does not return results. All those commands can work with prepared statements, taking the values for the parameters as additional arguments. For example like so:
db.all('SELECT ?::INTEGER AS fortytwo, ?::VARCHAR AS hello', 42, 'Hello, World', function(err, res) {
if (err) {
console.warn(err);
return;
}
console.log(res[0].fortytwo)
console.log(res[0].hello)
});
Connections
A database can have multiple Connection
s, those are created using db.connect()
.
const con = db.connect();
You can create multiple connections, each with their own transaction context.
Connection
objects also contain shorthands to directly call run()
, all()
and each()
with parameters and callbacks, respectively, for example:
con.all('SELECT 42 AS fortytwo', function(err, res) {
if (err) {
console.warn(err);
return;
}
console.log(res[0].fortytwo)
});
Prepared Statements
From connections, you can create prepared statements (and only that) using con.prepare()
:
const stmt = con.prepare('SELECT ?::INTEGER AS fortytwo');
To execute this statement, you can call for example all()
on the stmt
object:
stmt.all(42, function(err, res) {
if (err) {
console.warn(err);
} else {
console.log(res[0].fortytwo)
}
});
You can also execute the prepared statement multiple times. This is for example useful to fill a table with data:
con.run('CREATE TABLE a (i INTEGER)');
const stmt = con.prepare('INSERT INTO a VALUES (?)');
for (let i = 0; i < 10; i++) {
stmt.run(i);
}
stmt.finalize();
con.all('SELECT * FROM a', function(err, res) {
if (err) {
console.warn(err);
} else {
console.log(res)
}
});
prepare()
can also take a callback which gets the prepared statement as an argument:
const stmt = con.prepare('SELECT ?::INTEGER AS fortytwo', function(err, stmt) {
stmt.all(42, function(err, res) {
if (err) {
console.warn(err);
} else {
console.log(res[0].fortytwo)
}
});
});
Inserting Data via Arrow
Apache Arrow can be used to insert data into DuckDB without making a copy:
const arrow = require('apache-arrow');
const db = new duckdb.Database(':memory:');
const jsonData = [
{"userId":1,"id":1,"title":"delectus aut autem","completed":false},
{"userId":1,"id":2,"title":"quis ut nam facilis et officia qui","completed":false}
];
// note; doesn't work on Windows yet
db.exec(`INSTALL arrow; LOAD arrow;`, (err) => {
if (err) {
console.warn(err);
return;
}
const arrowTable = arrow.tableFromJSON(jsonData);
db.register_buffer("jsonDataTable", [arrow.tableToIPC(arrowTable)], true, (err, res) => {
if (err) {
console.warn(err);
return;
}
// `SELECT * FROM jsonDataTable` would return the entries in `jsonData`
});
});
Loading Unsigned Extensions
To load unsigned extensions, instantiate the database as follows:
db = new duckdb.Database(':memory:', {"allow_unsigned_extensions": "true"});