Search Shortcut cmd + k | ctrl + k
Search
cmd+k
ctrl+k
- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Go
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH / DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT / IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- LOAD / INSTALL
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network & Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browse Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- Embedding DuckDB
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
The iceberg
extension is a loadable extension that implements support for the Apache Iceberg format.
Installing and Loading
To install and load the iceberg
extension, run:
INSTALL iceberg;
LOAD iceberg;
Usage
To test the examples, download the iceberg_data.zip
file and unzip it.
Querying Individual Tables
SELECT count(*)
FROM iceberg_scan('data/iceberg/lineitem_iceberg', allow_moved_paths = true);
count_star() |
---|
51793 |
The
allow_moved_paths
option ensures that some path resolution is performed, which allows scanning Iceberg tables that are moved.
You can also address specify the current manifest directly in the query, this may be resolved from the catalog prior to the query, in this example the manifest version is a UUID.
SELECT count(*)
FROM iceberg_scan('data/iceberg/lineitem_iceberg/metadata/02701-1e474dc7-4723-4f8d-a8b3-b5f0454eb7ce.metadata.json');
This extension can be paired with the httpfs
extension to access Iceberg tables in object stores such as S3.
SELECT count(*)
FROM iceberg_scan('s3://bucketname/lineitem_iceberg/metadata/02701-1e474dc7-4723-4f8d-a8b3-b5f0454eb7ce.metadata.json', allow_moved_paths = true);
Access Iceberg Metadata
SELECT *
FROM iceberg_metadata('data/iceberg/lineitem_iceberg', allow_moved_paths = true);
manifest_path | manifest_sequence_number | manifest_content | status | content | file_path | file_format | record_count |
---|---|---|---|---|---|---|---|
lineitem_iceberg/metadata/10eaca8a-1e1c-421e-ad6d-b232e5ee23d3-m1.avro | 2 | DATA | ADDED | EXISTING | lineitem_iceberg/data/00041-414-f3c73457-bbd6-4b92-9c15-17b241171b16-00001.parquet | PARQUET | 51793 |
lineitem_iceberg/metadata/10eaca8a-1e1c-421e-ad6d-b232e5ee23d3-m0.avro | 2 | DATA | DELETED | EXISTING | lineitem_iceberg/data/00000-411-0792dcfe-4e25-4ca3-8ada-175286069a47-00001.parquet | PARQUET | 60175 |
Visualizing Snapshots
SELECT *
FROM iceberg_snapshots('data/iceberg/lineitem_iceberg');
sequence_number | snapshot_id | timestamp_ms | manifest_list |
---|---|---|---|
1 | 3776207205136740581 | 2023-02-15 15:07:54.504 | lineitem_iceberg/metadata/snap-3776207205136740581-1-cf3d0be5-cf70-453d-ad8f-48fdc412e608.avro |
2 | 7635660646343998149 | 2023-02-15 15:08:14.73 | lineitem_iceberg/metadata/snap-7635660646343998149-1-10eaca8a-1e1c-421e-ad6d-b232e5ee23d3.avro |
Limitations
Writing (i.e., exporting to) Iceberg files is currently not supported.