- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java
- Julia
- Node.js (Neo)
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- Embedding DuckDB
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Examples
Read a set of CSV files combining columns by position:
SELECT * FROM read_csv('flights*.csv');
Read a set of CSV files combining columns by name:
SELECT * FROM read_csv('flights*.csv', union_by_name = true);
Combining Schemas
When reading from multiple files, we have to combine schemas from those files. That is because each file has its own schema that can differ from the other files. DuckDB offers two ways of unifying schemas of multiple files: by column position and by column name.
By default, DuckDB reads the schema of the first file provided, and then unifies columns in subsequent files by column position. This works correctly as long as all files have the same schema. If the schema of the files differs, you might want to use the union_by_name
option to allow DuckDB to construct the schema by reading all of the names instead.
Below is an example of how both methods work.
Union by Position
By default, DuckDB unifies the columns of these different files by position. This means that the first column in each file is combined together, as well as the second column in each file, etc. For example, consider the following two files.
FlightDate|UniqueCarrier|OriginCityName|DestCityName
1988-01-01|AA|New York, NY|Los Angeles, CA
1988-01-02|AA|New York, NY|Los Angeles, CA
FlightDate|UniqueCarrier|OriginCityName|DestCityName
1988-01-03|AA|New York, NY|Los Angeles, CA
Reading the two files at the same time will produce the following result set:
FlightDate | UniqueCarrier | OriginCityName | DestCityName |
---|---|---|---|
1988-01-01 | AA | New York, NY | Los Angeles, CA |
1988-01-02 | AA | New York, NY | Los Angeles, CA |
1988-01-03 | AA | New York, NY | Los Angeles, CA |
This is equivalent to the SQL construct UNION ALL
.
Union by Name
If you are processing multiple files that have different schemas, perhaps because columns have been added or renamed, it might be desirable to unify the columns of different files by name instead. This can be done by providing the union_by_name
option. For example, consider the following two files, where flights4.csv
has an extra column (UniqueCarrier
).
FlightDate|OriginCityName|DestCityName
1988-01-01|New York, NY|Los Angeles, CA
1988-01-02|New York, NY|Los Angeles, CA
FlightDate|UniqueCarrier|OriginCityName|DestCityName
1988-01-03|AA|New York, NY|Los Angeles, CA
Reading these when unifying column names by position results in an error – as the two files have a different number of columns. When specifying the union_by_name
option, the columns are correctly unified, and any missing values are set to NULL
.
SELECT * FROM read_csv(['flights3.csv', 'flights4.csv'], union_by_name = true);
FlightDate | OriginCityName | DestCityName | UniqueCarrier |
---|---|---|---|
1988-01-01 | New York, NY | Los Angeles, CA | NULL |
1988-01-02 | New York, NY | Los Angeles, CA | NULL |
1988-01-03 | New York, NY | Los Angeles, CA | AA |
This is equivalent to the SQL construct UNION ALL BY NAME
.
Using the
union_by_name
option increases memory consumption.