- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Go
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH / DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT / IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- LOAD / INSTALL
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Samples
- Configuration
- Extensions
- Overview
- Core Extensions
- Community Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Delta
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- JSON
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network & Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Import
- Schema
- Indexing
- Environment
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Glossary of Terms
- Browse Offline
- Operations Manual
- Overview
- Limits
- Non-Deterministic Behavior
- DuckDB's Footprint
- Securing DuckDB
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building
- Overview
- Build Instructions
- Build Configuration
- Building Extensions
- Supported Platforms
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Unfortunately there are some issues that are either beyond our control or are very elusive / hard to track down. Below is a list of these issues that you might have to be aware of, depending on your workflow.
Numpy Import Multithreading
When making use of multi threading and fetching results either directly as Numpy arrays or indirectly through a Pandas DataFrame, it might be necessary to ensure that numpy.core.multiarray
is imported.
If this module has not been imported from the main thread, and a different thread during execution attempts to import it this causes either a deadlock or a crash.
To avoid this, it's recommended to import numpy.core.multiarray
before starting up threads.
DESCRIBE
and SUMMARIZE
Return Empty Tables in Jupyter
The DESCRIBE
and SUMMARIZE
statements return an empty table:
%sql
CREATE OR REPLACE TABLE tbl AS (SELECT 42 AS x);
DESCRIBE tbl;
To work around this, wrap them into a subquery:
%sql
CREATE OR REPLACE TABLE tbl AS (SELECT 42 AS x);
FROM (DESCRIBE tbl);
Protobuf Error for JupySQL in IPython
Loading the JupySQL extension in IPython fails:
In [1]: %load_ext sql
ImportError: cannot import name 'builder' from 'google.protobuf.internal' (unknown location)
The solution is to fix the protobuf
package. This may require uninstalling conflicting packages, e.g.:
%pip uninstall tensorflow
%pip install protobuf
Running EXPLAIN
Renders Newlines
In Python, the output of the EXPLAIN
statement contains hard line breaks (\n
):
In [1]: import duckdb
...: duckdb.sql("EXPLAIN SELECT 42 AS x")
Out[1]:
┌───────────────┬───────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ explain_key │ explain_value │
│ varchar │ varchar │
├───────────────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ physical_plan │ ┌───────────────────────────┐\n│ PROJECTION │\n│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │\n│ x … │
└───────────────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
To work around this, print
the output of the explain()
function:
In [2]: print(duckdb.sql("SELECT 42 AS x").explain())
Out[2]:
┌───────────────────────────┐
│ PROJECTION │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│ x │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│ DUMMY_SCAN │
└───────────────────────────┘
Please also check out the Jupyter guide for tips on using Jupyter with JupySQL.
Error When Importing the DuckDB Python Package on Windows
When importing DuckDB on Windows, the Python runtime may return the following error:
import duckdb
ImportError: DLL load failed while importing duckdb: The specified module could not be found.
The solution is to install the Microsoft Visual C++ Redistributable package.